Gene expression data analysis is one of the most valuable and relatively mature application areas of big data. This book is a work on cancer gene expression data mining and machine learning algorithms, comprehensively and systematically explaining the models, algorithms, platforms, and examples of cancer gene expression data learning. The book consists of 10 chapters and is divided into 4 parts. The first part includes chapters 1-3, which introduce the basic knowledge of cancer gene expression data, preprocessing techniques, and commonly used data analysis platforms; Part 2 (Chapters 4-6) introduces key gene screening, class imbalance data sampling, and cancer pathogenic gene prediction methods; Part 3 (Chapters 7-8) is about sequence based gene association rules and local pattern mining techniques. Chapter 7 is about gene association analysis mining frequent atomic sequences, and Chapter 8 is about mining and querying order-preserving submatrixes; Part 4 (Chapters 9-10) is the classification and novel class recognition algorithm for cancer gene expression data.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 23,00 gastos de envío desde Alemania a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 264 pp. Englisch. Nº de ref. del artículo: 9786206770572
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Gene expression data analysis is one of the most valuable and relatively mature application areas of big data. This book is a work on cancer gene expression data mining and machine learning algorithms, comprehensively and systematically explaining the model. Nº de ref. del artículo: 1354082796
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26400923345
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 395453710
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18400923355
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Gene expression data analysis is one of the most valuable and relatively mature application areas of big data. This book is a work on cancer gene expression data mining and machine learning algorithms, comprehensively and systematically explaining the models, algorithms, platforms, and examples of cancer gene expression data learning. The book consists of 10 chapters and is divided into 4 parts. The first part includes chapters 1-3, which introduce the basic knowledge of cancer gene expression data, preprocessing techniques, and commonly used data analysis platforms; Part 2 (Chapters 4-6) introduces key gene screening, class imbalance data sampling, and cancer pathogenic gene prediction methods; Part 3 (Chapters 7-8) is about sequence based gene association rules and local pattern mining techniques. Chapter 7 is about gene association analysis mining frequent atomic sequences, and Chapter 8 is about mining and querying order-preserving submatrixes; Part 4 (Chapters 9-10) is the classification and novel class recognition algorithm for cancer gene expression data.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 264 pp. Englisch. Nº de ref. del artículo: 9786206770572
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Gene expression data analysis is one of the most valuable and relatively mature application areas of big data. This book is a work on cancer gene expression data mining and machine learning algorithms, comprehensively and systematically explaining the models, algorithms, platforms, and examples of cancer gene expression data learning. The book consists of 10 chapters and is divided into 4 parts. The first part includes chapters 1-3, which introduce the basic knowledge of cancer gene expression data, preprocessing techniques, and commonly used data analysis platforms; Part 2 (Chapters 4-6) introduces key gene screening, class imbalance data sampling, and cancer pathogenic gene prediction methods; Part 3 (Chapters 7-8) is about sequence based gene association rules and local pattern mining techniques. Chapter 7 is about gene association analysis mining frequent atomic sequences, and Chapter 8 is about mining and querying order-preserving submatrixes; Part 4 (Chapters 9-10) is the classification and novel class recognition algorithm for cancer gene expression data. Nº de ref. del artículo: 9786206770572
Cantidad disponible: 1 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
paperback. Condición: New. New. book. Nº de ref. del artículo: ERICA80062067705756
Cantidad disponible: 1 disponibles