Artículos relacionados a Classification d'objets à l'aide d'un hachage...

Classification d'objets à l'aide d'un hachage supervisé rapide: pour les données de haute dimension - Tapa blanda

 
9786206187455: Classification d'objets à l'aide d'un hachage supervisé rapide: pour les données de haute dimension

Sinopsis

Le principal objectif du hachage supervisé est de convertir les caractéristiques originales en codes binaires courts qui peuvent maintenir la similarité des étiquettes dans l'espace de Hamming. En raison de leur forte capacité de généralisation, les fonctions de hachage non linéaires se sont révélées supérieures aux fonctions linéaires. Les fonctions à noyau sont fréquemment utilisées dans la littérature pour créer des fonctions de hachage non linéaires, ce qui se traduit par des performances de recherche encourageantes, mais par des temps d'évaluation et d'apprentissage longs. Nous proposons ici d'utiliser des arbres de décision boostés, qui sont rapides à former et à évaluer et qui conviennent donc mieux au hachage avec des données de grande dimension. Dans le cadre de l'amélioration continue, nous proposons d'abord des formulations sous-modulaires pour le problème de l'inférence du code binaire de hachage, ainsi qu'une technique efficace de recherche par blocs basée sur le Graph Cut pour l'inférence à grande échelle. Ensuite, nous formons des arbres de décision boostés en fonction des codes binaires afin d'apprendre les fonctions de hachage. Les expériences montrent qu'en termes de précision d'extraction et de durée d'apprentissage, la stratégie que nous proposons surpasse largement la majorité des méthodes de pointe.

"Sinopsis" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Classification d'objets à l'aide d'un hachage...

Imagen del vendedor

M. Aravind Kumar
Publicado por Editions Notre Savoir Jun 2023, 2023
ISBN 10: 6206187454 ISBN 13: 9786206187455
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Le principal objectif du hachage supervisé est de convertir les caractéristiques originales en codes binaires courts qui peuvent maintenir la similarité des étiquettes dans l'espace de Hamming. En raison de leur forte capacité de généralisation, les fonctions de hachage non linéaires se sont révélées supérieures aux fonctions linéaires. Les fonctions à noyau sont fréquemment utilisées dans la littérature pour créer des fonctions de hachage non linéaires, ce qui se traduit par des performances de recherche encourageantes, mais par des temps d'évaluation et d'apprentissage longs. Nous proposons ici d'utiliser des arbres de décision boostés, qui sont rapides à former et à évaluer et qui conviennent donc mieux au hachage avec des données de grande dimension. Dans le cadre de l'amélioration continue, nous proposons d'abord des formulations sous-modulaires pour le problème de l'inférence du code binaire de hachage, ainsi qu'une technique efficace de recherche par blocs basée sur le Graph Cut pour l'inférence à grande échelle. Ensuite, nous formons des arbres de décision boostés en fonction des codes binaires afin d'apprendre les fonctions de hachage. Les expériences montrent qu'en termes de précision d'extraction et de durée d'apprentissage, la stratégie que nous proposons surpasse largement la majorité des méthodes de pointe. 80 pp. Französisch. Nº de ref. del artículo: 9786206187455

Contactar al vendedor

Comprar nuevo

EUR 43,90
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

M. Aravind Kumar
Publicado por Editions Notre Savoir, 2023
ISBN 10: 6206187454 ISBN 13: 9786206187455
Nuevo Tapa blanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 911319486

Contactar al vendedor

Comprar nuevo

EUR 35,62
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

M. Aravind Kumar
Publicado por Editions Notre Savoir, 2023
ISBN 10: 6206187454 ISBN 13: 9786206187455
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Le principal objectif du hachage supervisé est de convertir les caractéristiques originales en codes binaires courts qui peuvent maintenir la similarité des étiquettes dans l'espace de Hamming. En raison de leur forte capacité de généralisation, les fonctions de hachage non linéaires se sont révélées supérieures aux fonctions linéaires. Les fonctions à noyau sont fréquemment utilisées dans la littérature pour créer des fonctions de hachage non linéaires, ce qui se traduit par des performances de recherche encourageantes, mais par des temps d'évaluation et d'apprentissage longs. Nous proposons ici d'utiliser des arbres de décision boostés, qui sont rapides à former et à évaluer et qui conviennent donc mieux au hachage avec des données de grande dimension. Dans le cadre de l'amélioration continue, nous proposons d'abord des formulations sous-modulaires pour le problème de l'inférence du code binaire de hachage, ainsi qu'une technique efficace de recherche par blocs basée sur le Graph Cut pour l'inférence à grande échelle. Ensuite, nous formons des arbres de décision boostés en fonction des codes binaires afin d'apprendre les fonctions de hachage. Les expériences montrent qu'en termes de précision d'extraction et de durée d'apprentissage, la stratégie que nous proposons surpasse largement la majorité des méthodes de pointe. Nº de ref. del artículo: 9786206187455

Contactar al vendedor

Comprar nuevo

EUR 44,59
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

M. Aravind Kumar
Publicado por Editions Notre Savoir Jun 2023, 2023
ISBN 10: 6206187454 ISBN 13: 9786206187455
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Le principal objectif du hachage supervisé est de convertir les caractéristiques originales en codes binaires courts qui peuvent maintenir la similarité des étiquettes dans l'espace de Hamming. En raison de leur forte capacité de généralisation, les fonctions de hachage non linéaires se sont révélées supérieures aux fonctions linéaires. Les fonctions à noyau sont fréquemment utilisées dans la littérature pour créer des fonctions de hachage non linéaires, ce qui se traduit par des performances de recherche encourageantes, mais par des temps d'évaluation et d'apprentissage longs. Nous proposons ici d'utiliser des arbres de décision boostés, qui sont rapides à former et à évaluer et qui conviennent donc mieux au hachage avec des données de grande dimension. Dans le cadre de l'amélioration continue, nous proposons d'abord des formulations sous-modulaires pour le problème de l'inférence du code binaire de hachage, ainsi qu'une technique efficace de recherche par blocs basée sur le Graph Cut pour l'inférence à grande échelle. Ensuite, nous formons des arbres de décision boostés en fonction des codes binaires afin d'apprendre les fonctions de hachage. Les expériences montrent qu'en termes de précision d'extraction et de durée d'apprentissage, la stratégie que nous proposons surpasse largement la majorité des méthodes de pointe.Books on Demand GmbH, Überseering 33, 22297 Hamburg 80 pp. Französisch. Nº de ref. del artículo: 9786206187455

Contactar al vendedor

Comprar nuevo

EUR 43,90
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito