Network intrusion detection is one of the central systems used in cyber security to prevent the intrusions in the organisation's networks. Tackling the attempts to compromise the confidentiality, integrity and availability of computer networks' security mechanisms in a big data environment is the most challenging task due to the volume and variety of big data. This study presented to tackle the challenges in network Intrusion Detection Systems (IDS) and demonstrate intelligent algorithms' development to detect the intrusions in big network data. The problem is the practical selection of the features from the network dataset as it dramatically impacts the intrusion detection accuracy. Hence, an efficient feature selection approach must be introduced to achieve higher accuracy with a reduced number of features.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Ramasamy GunavathiDr. R. Gunavathi is working as Associate Professor, CHRIST University. Her current research interest is in Mobile Ad Hoc Networks, Vehicular Ad hoc Networks, Data Analytics and Bigdata Analytics. She has produced 3. Nº de ref. del artículo: 872703939
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Network intrusion detection is one of the central systems used in cyber security to prevent the intrusions in the organisation's networks. Tackling the attempts to compromise the confidentiality, integrity and availability of computer networks' security mechanisms in a big data environment is the most challenging task due to the volume and variety of big data. This study presented to tackle the challenges in network Intrusion Detection Systems (IDS) and demonstrate intelligent algorithms' development to detect the intrusions in big network data. The problem is the practical selection of the features from the network dataset as it dramatically impacts the intrusion detection accuracy. Hence, an efficient feature selection approach must be introduced to achieve higher accuracy with a reduced number of features. 236 pp. Englisch. Nº de ref. del artículo: 9786206158851
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Network intrusion detection is one of the central systems used in cyber security to prevent the intrusions in the organisation's networks. Tackling the attempts to compromise the confidentiality, integrity and availability of computer networks' security mechanisms in a big data environment is the most challenging task due to the volume and variety of big data. This study presented to tackle the challenges in network Intrusion Detection Systems (IDS) and demonstrate intelligent algorithms' development to detect the intrusions in big network data. The problem is the practical selection of the features from the network dataset as it dramatically impacts the intrusion detection accuracy. Hence, an efficient feature selection approach must be introduced to achieve higher accuracy with a reduced number of features. Nº de ref. del artículo: 9786206158851
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18396420779
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Network intrusion detection is one of the central systems used in cyber security to prevent the intrusions in the organisation's networks. Tackling the attempts to compromise the confidentiality, integrity and availability of computer networks' security mechanisms in a big data environment is the most challenging task due to the volume and variety of big data. This study presented to tackle the challenges in network Intrusion Detection Systems (IDS) and demonstrate intelligent algorithms' development to detect the intrusions in big network data. The problem is the practical selection of the features from the network dataset as it dramatically impacts the intrusion detection accuracy. Hence, an efficient feature selection approach must be introduced to achieve higher accuracy with a reduced number of features.Books on Demand GmbH, Überseering 33, 22297 Hamburg 236 pp. Englisch. Nº de ref. del artículo: 9786206158851
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26396420769
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 399989118
Cantidad disponible: 4 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
paperback. Condición: New. New. book. Nº de ref. del artículo: ERICA82362061588536
Cantidad disponible: 1 disponibles