In the present era of information processing through computers and access of private information over the internet like bank account information even the transaction of money, business deal through video conferencing, encryption of the messages in various forms has become inevitable. There are mainly two types of encryption algorithms, private key (also called symmetric key having single key for encryption and decryption) and public key (separate key for encryption and decryption). In the present work, hardware optimization for AES architecture has been done in different stages. The hardware comparison results show that as AES architecture has critical path delay of 9.78 ns when conventional s-box is used, whereas it has critical path delay of 8.17 ns using proposed s-box architecture. The total clock cycles required to encrypt 128 bits of data using proposed AES architecture are 86 and therefore, throughput of the AES design in Spartan-6 of Xilinx FPGA is approximately 182.2 Mbits/s. To achieve the very high speed, full custom design of s-box in composite field has been done for the proposed s-box architecture in Cadence Virtuoso. The novel XOR gate is proposed for this design.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the present era of information processing through computers and access of private information over the internet like bank account information even the transaction of money, business deal through video conferencing, encryption of the messages in various forms has become inevitable. There are mainly two types of encryption algorithms, private key (also called symmetric key having single key for encryption and decryption) and public key (separate key for encryption and decryption). In the present work, hardware optimization for AES architecture has been done in different stages. The hardware comparison results show that as AES architecture has critical path delay of 9.78 ns when conventional s-box is used, whereas it has critical path delay of 8.17 ns using proposed s-box architecture. The total clock cycles required to encrypt 128 bits of data using proposed AES architecture are 86 and therefore, throughput of the AES design in Spartan-6 of Xilinx FPGA is approximately 182.2 Mbits/s. To achieve the very high speed, full custom design of s-box in composite field has been done for the proposed s-box architecture in Cadence Virtuoso. The novel XOR gate is proposed for this design. 80 pp. Englisch. Nº de ref. del artículo: 9786202797320
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In the present era of information processing through computers and access of private information over the internet like bank account information even the transaction of money, business deal through video conferencing, encryption of the messages in various forms has become inevitable. There are mainly two types of encryption algorithms, private key (also called symmetric key having single key for encryption and decryption) and public key (separate key for encryption and decryption). In the present work, hardware optimization for AES architecture has been done in different stages. The hardware comparison results show that as AES architecture has critical path delay of 9.78 ns when conventional s-box is used, whereas it has critical path delay of 8.17 ns using proposed s-box architecture. The total clock cycles required to encrypt 128 bits of data using proposed AES architecture are 86 and therefore, throughput of the AES design in Spartan-6 of Xilinx FPGA is approximately 182.2 Mbits/s. To achieve the very high speed, full custom design of s-box in composite field has been done for the proposed s-box architecture in Cadence Virtuoso. The novel XOR gate is proposed for this design. Nº de ref. del artículo: 9786202797320
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 494133253
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 400130498
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18397295127
Cantidad disponible: 4 disponibles