Artículos relacionados a Numerical Solution of Integral Equations using Haar...

Numerical Solution of Integral Equations using Haar Wavelet: Applications on different class of Integral Equations - Tapa blanda

 
9786202521550: Numerical Solution of Integral Equations using Haar Wavelet: Applications on different class of Integral Equations

Sinopsis

Haar wavelet collocation method(HWCM) is applied to obtain the numerical solution of integral and integro-differential equations. Applications of the Haar wavelet collocation method based on Leibnitz rule. The Haar wavelet function and its operational matrix were employed to solve the resultant integral and integro-differential equations. The numerical results are obtained by the proposed method have been compared with existing method. The conversion of integral and integro-differential equation into equivalent differential equation with initial conditions and then reduces to a system of algebraic equations. An advantage of Haar wavelet is accurate, approximate solutions by computation round off errors and it is not necessity of large computer memory and time. It is also ability to solve other mathematical, physical, and engineering problems. Illustrative examples are tested clearly to check the validity and applicability of the technique and error analysis.

"Sinopsis" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Numerical Solution of Integral Equations using Haar...

Imagen del vendedor

Ravikiran A. Mundewadi
ISBN 10: 6202521554 ISBN 13: 9786202521550
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Haar wavelet collocation method(HWCM) is applied to obtain the numerical solution of integral and integro-differential equations. Applications of the Haar wavelet collocation method based on Leibnitz rule. The Haar wavelet function and its operational matrix were employed to solve the resultant integral and integro-differential equations. The numerical results are obtained by the proposed method have been compared with existing method. The conversion of integral and integro-differential equation into equivalent differential equation with initial conditions and then reduces to a system of algebraic equations. An advantage of Haar wavelet is accurate, approximate solutions by computation round off errors and it is not necessity of large computer memory and time. It is also ability to solve other mathematical, physical, and engineering problems. Illustrative examples are tested clearly to check the validity and applicability of the technique and error analysis. 64 pp. Englisch. Nº de ref. del artículo: 9786202521550

Contactar al vendedor

Comprar nuevo

EUR 39,90
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Ravikiran A. Mundewadi
Publicado por LAP LAMBERT Academic Publishing, 2020
ISBN 10: 6202521554 ISBN 13: 9786202521550
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Haar wavelet collocation method(HWCM) is applied to obtain the numerical solution of integral and integro-differential equations. Applications of the Haar wavelet collocation method based on Leibnitz rule. The Haar wavelet function and its operational matrix were employed to solve the resultant integral and integro-differential equations. The numerical results are obtained by the proposed method have been compared with existing method. The conversion of integral and integro-differential equation into equivalent differential equation with initial conditions and then reduces to a system of algebraic equations. An advantage of Haar wavelet is accurate, approximate solutions by computation round off errors and it is not necessity of large computer memory and time. It is also ability to solve other mathematical, physical, and engineering problems. Illustrative examples are tested clearly to check the validity and applicability of the technique and error analysis. Nº de ref. del artículo: 9786202521550

Contactar al vendedor

Comprar nuevo

EUR 40,89
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ravikiran A. Mundewadi
Publicado por LAP LAMBERT Academic Publishing, 2020
ISBN 10: 6202521554 ISBN 13: 9786202521550
Nuevo Tapa blanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 385945910

Contactar al vendedor

Comprar nuevo

EUR 34,25
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Ravikiran A. Mundewadi
ISBN 10: 6202521554 ISBN 13: 9786202521550
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Haar wavelet collocation method(HWCM) is applied to obtain the numerical solution of integral and integro-differential equations. Applications of the Haar wavelet collocation method based on Leibnitz rule. The Haar wavelet function and its operational matrix were employed to solve the resultant integral and integro-differential equations. The numerical results are obtained by the proposed method have been compared with existing method. The conversion of integral and integro-differential equation into equivalent differential equation with initial conditions and then reduces to a system of algebraic equations. An advantage of Haar wavelet is accurate, approximate solutions by computation round off errors and it is not necessity of large computer memory and time. It is also ability to solve other mathematical, physical, and engineering problems. Illustrative examples are tested clearly to check the validity and applicability of the technique and error analysis.Books on Demand GmbH, Überseering 33, 22297 Hamburg 64 pp. Englisch. Nº de ref. del artículo: 9786202521550

Contactar al vendedor

Comprar nuevo

EUR 39,90
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito