Artículos relacionados a Packet Drop Attack Detection In Mobile Adhoc Networks...

Packet Drop Attack Detection In Mobile Adhoc Networks using ANN - Tapa blanda

 
9786139827237: Packet Drop Attack Detection In Mobile Adhoc Networks using ANN

Sinopsis

Intrusion Detection Systems uses multiple methods to detect and prevent network attacks. A good IDS should be designed to reduce false positives and to ensure that only actual malicious traffic is detected and stopped .This study focuses on detecting the presence of malicious nodes that selectively or randomly drop packets intended for other destination nodes in Mobile Ad-hoc Networks(MANETs) ,it further classifies each packet drop attack, according to its attack type by observing and analyzing how each packet drop attack affect the network characteristics. Network security monitoring is based on the principle that prevention eventually fails. In the current threat landscape, no matter how much you try, motivated attackers will eventually find their way into your network. At that point, your ability to detect and respond to that intrusion can be the difference between a small incident and a major disaster. This study follows a three-stage cycle: i. data collection ii. data analysis iii. detection and classification. This syudy motivates the intelligent use of artificial neural networks that makes use of local data collected at each node in detecting malicious activities.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Intrusion Detection Systems uses multiple methods to detect and prevent network attacks. A good IDS should be designed to reduce false positives and to ensure that only actual malicious traffic is detected and stopped .This study focuses on detecting the presence of malicious nodes that selectively or randomly drop packets intended for other destination nodes in Mobile Ad-hoc Networks(MANETs) ,it further classifies each packet drop attack, according to its attack type by observing and analyzing how each packet drop attack affect the network characteristics. Network security monitoring is based on the principle that prevention eventually fails. In the current threat landscape, no matter how much you try, motivated attackers will eventually find their way into your network. At that point, your ability to detect and respond to that intrusion can be the difference between a small incident and a major disaster. This study follows a three-stage cycle: i. data collection ii. data analysis iii. detection and classification. This syudy motivates the intelligent use of artificial neural networks that makes use of local data collected at each node in detecting malicious activities.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialLAP LAMBERT Academic Publishing
  • Año de publicación2018
  • ISBN 10 613982723X
  • ISBN 13 9786139827237
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas84
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Packet Drop Attack Detection In Mobile Adhoc Networks...

Imagen del vendedor

Innocent Mapanga
ISBN 10: 613982723X ISBN 13: 9786139827237
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Intrusion Detection Systems uses multiple methods to detect and prevent network attacks. A good IDS should be designed to reduce false positives and to ensure that only actual malicious traffic is detected and stopped .This study focuses on detecting the presence of malicious nodes that selectively or randomly drop packets intended for other destination nodes in Mobile Ad-hoc Networks(MANETs) ,it further classifies each packet drop attack, according to its attack type by observing and analyzing how each packet drop attack affect the network characteristics. Network security monitoring is based on the principle that prevention eventually fails. In the current threat landscape, no matter how much you try, motivated attackers will eventually find their way into your network. At that point, your ability to detect and respond to that intrusion can be the difference between a small incident and a major disaster. This study follows a three-stage cycle: i. data collection ii. data analysis iii. detection and classification. This syudy motivates the intelligent use of artificial neural networks that makes use of local data collected at each node in detecting malicious activities. 84 pp. Englisch. Nº de ref. del artículo: 9786139827237

Contactar al vendedor

Comprar nuevo

EUR 35,90
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Innocent Mapanga
Publicado por LAP LAMBERT Academic Publishing, 2018
ISBN 10: 613982723X ISBN 13: 9786139827237
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Intrusion Detection Systems uses multiple methods to detect and prevent network attacks. A good IDS should be designed to reduce false positives and to ensure that only actual malicious traffic is detected and stopped .This study focuses on detecting the presence of malicious nodes that selectively or randomly drop packets intended for other destination nodes in Mobile Ad-hoc Networks(MANETs) ,it further classifies each packet drop attack, according to its attack type by observing and analyzing how each packet drop attack affect the network characteristics. Network security monitoring is based on the principle that prevention eventually fails. In the current threat landscape, no matter how much you try, motivated attackers will eventually find their way into your network. At that point, your ability to detect and respond to that intrusion can be the difference between a small incident and a major disaster. This study follows a three-stage cycle: i. data collection ii. data analysis iii. detection and classification. This syudy motivates the intelligent use of artificial neural networks that makes use of local data collected at each node in detecting malicious activities. Nº de ref. del artículo: 9786139827237

Contactar al vendedor

Comprar nuevo

EUR 37,20
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Innocent Mapanga
Publicado por LAP LAMBERT Academic Publishing, 2018
ISBN 10: 613982723X ISBN 13: 9786139827237
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Mapanga InnocentInnocent Mapanga was born in Zimbabwe. He received his B.Sc. Honors degree in Computer Science from Bindura University of Science Education, Zimbabwe, in 2008 and an MTech in Computer Science & Engineering from Delhi . Nº de ref. del artículo: 385872965

Contactar al vendedor

Comprar nuevo

EUR 31,27
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Innocent Mapanga
ISBN 10: 613982723X ISBN 13: 9786139827237
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Intrusion Detection Systems uses multiple methods to detect and prevent network attacks. A good IDS should be designed to reduce false positives and to ensure that only actual malicious traffic is detected and stopped .This study focuses on detecting the presence of malicious nodes that selectively or randomly drop packets intended for other destination nodes in Mobile Ad-hoc Networks(MANETs) ,it further classifies each packet drop attack, according to its attack type by observing and analyzing how each packet drop attack affect the network characteristics. Network security monitoring is based on the principle that prevention eventually fails. In the current threat landscape, no matter how much you try, motivated attackers will eventually find their way into your network. At that point, your ability to detect and respond to that intrusion can be the difference between a small incident and a major disaster. This study follows a three-stage cycle: i. data collection ii. data analysis iii. detection and classification. This syudy motivates the intelligent use of artificial neural networks that makes use of local data collected at each node in detecting malicious activities.Books on Demand GmbH, Überseering 33, 22297 Hamburg 84 pp. Englisch. Nº de ref. del artículo: 9786139827237

Contactar al vendedor

Comprar nuevo

EUR 35,90
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito