Artículos relacionados a Applications of Deep Learning to Radar Polarimetry:...

Applications of Deep Learning to Radar Polarimetry: A Physics First Approach to Machine Learning in Radar Earth Observation Applications - Tapa blanda

 
9786139815999: Applications of Deep Learning to Radar Polarimetry: A Physics First Approach to Machine Learning in Radar Earth Observation Applications

Sinopsis

Radar remote sensing has made significant technological and scientific advances in the past few years. Sensors and constellations are able to acquire high resolution, polarimetric, wide swath data with high temporal repetivity. This has lead to an exponential increase in the volume of data available. With more temporally dense constellations planned in the near future, it is imperative that automated techniques based on machine learning algorithms be developed that are able to take advantage of all the acquired data and convert latent information to actionable knowledge. However, the use of indiscriminate machine learning techniques can be problematic since there is no guarantee that the learned model makes sense from a physical standpoint. Advanced neural network techniques, collectively called 'deep leaning' algorithms have demonstrated the ability to self-learn features from a data-volume, greatly reducing the need for time-consuming feature tuning. In this book, novel deep learning algorithms and architectures are detailed for various earth observation applications using fully polarimetric SAR data based, and constrained by the principles of scattering physics.

"Sinopsis" puede pertenecer a otra edición de este libro.

  • EditorialLAP LAMBERT Academic Publishing
  • Año de publicación2018
  • ISBN 10 6139815991
  • ISBN 13 9786139815999
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas212
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Applications of Deep Learning to Radar Polarimetry:...

Imagen del vendedor

Shaunak De
Publicado por LAP LAMBERT Academic Publishing, 2018
ISBN 10: 6139815991 ISBN 13: 9786139815999
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: De ShaunakDr Shaunak De received the B.Eng. in electronics from the University of Mumbai in 2012 (gold medalist) and the PhD from Indian Institute of Technology Bombay in 2018. He s worked extensively in the field of remote sensing, . Nº de ref. del artículo: 385872205

Contactar al vendedor

Comprar nuevo

EUR 62,84
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Shaunak de
ISBN 10: 6139815991 ISBN 13: 9786139815999
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Radar remote sensing has made significant technological and scientific advances in the past few years. Sensors and constellations are able to acquire high resolution, polarimetric, wide swath data with high temporal repetivity. This has lead to an exponential increase in the volume of data available. With more temporally dense constellations planned in the near future, it is imperative that automated techniques based on machine learning algorithms be developed that are able to take advantage of all the acquired data and convert latent information to actionable knowledge. However, the use of indiscriminate machine learning techniques can be problematic since there is no guarantee that the learned model makes sense from a physical standpoint. Advanced neural network techniques, collectively called 'deep leaning' algorithms have demonstrated the ability to self-learn features from a data-volume, greatly reducing the need for time-consuming feature tuning. In this book, novel deep learning algorithms and architectures are detailed for various earth observation applications using fully polarimetric SAR data based, and constrained by the principles of scattering physics. 212 pp. Englisch. Nº de ref. del artículo: 9786139815999

Contactar al vendedor

Comprar nuevo

EUR 76,90
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Shaunak de
Publicado por LAP LAMBERT Academic Publishing, 2018
ISBN 10: 6139815991 ISBN 13: 9786139815999
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Radar remote sensing has made significant technological and scientific advances in the past few years. Sensors and constellations are able to acquire high resolution, polarimetric, wide swath data with high temporal repetivity. This has lead to an exponential increase in the volume of data available. With more temporally dense constellations planned in the near future, it is imperative that automated techniques based on machine learning algorithms be developed that are able to take advantage of all the acquired data and convert latent information to actionable knowledge. However, the use of indiscriminate machine learning techniques can be problematic since there is no guarantee that the learned model makes sense from a physical standpoint. Advanced neural network techniques, collectively called 'deep leaning' algorithms have demonstrated the ability to self-learn features from a data-volume, greatly reducing the need for time-consuming feature tuning. In this book, novel deep learning algorithms and architectures are detailed for various earth observation applications using fully polarimetric SAR data based, and constrained by the principles of scattering physics. Nº de ref. del artículo: 9786139815999

Contactar al vendedor

Comprar nuevo

EUR 77,82
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

De, Shaunak
Publicado por LAP LAMBERT Academic Publishing, 2018
ISBN 10: 6139815991 ISBN 13: 9786139815999
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 212 pages. 8.66x5.91x0.48 inches. In Stock. Nº de ref. del artículo: zk6139815991

Contactar al vendedor

Comprar nuevo

EUR 140,18
Convertir moneda
Gastos de envío: EUR 11,91
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito