Using the example of a complicated problem such as the Cauchy problem for the Navier--Stokes equation, we show how the Poincare--Riemann--Hilbert boundary-value problem enables us to construct effective estimates of solutions for this case. The apparatus of the three-dimensional inverse problem of quantum scattering theory is developed for this. It is shown that the unitary scattering operator can be studied as a solution of the Poincare-Riemann--Hilbert boundary-value problem. The same scheme of reduction of Riemann integral equations for the zeta function to the Poincare--Riemann--Hilbert boundary-value problem allows us to construct effective estimates that describe the behaviour of the zeros of the zeta function very well.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Using the example of a complicated problem such as the Cauchy problem for the Navier--Stokes equation, we show how the Poincare--Riemann--Hilbert boundary-value problem enables us to construct effective estimates of solutions for this case. The apparatus of the three-dimensional inverse problem of quantum scattering theory is developed for this. It is shown that the unitary scattering operator can be studied as a solution of the Poincare-Riemann--Hilbert boundary-value problem. The same scheme of reduction of Riemann integral equations for the zeta function to the Poincare--Riemann--Hilbert boundary-value problem allows us to construct effective estimates that describe the behaviour of the zeros of the zeta function very well. 52 pp. Englisch. Nº de ref. del artículo: 9786138825197
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Using the example of a complicated problem such as the Cauchy problem for the Navier--Stokes equation, we show how the Poincare--Riemann--Hilbert boundary-value problem enables us to construct effective estimates of solutions for this case. The apparatus of the three-dimensional inverse problem of quantum scattering theory is developed for this. It is shown that the unitary scattering operator can be studied as a solution of the Poincare-Riemann--Hilbert boundary-value problem. The same scheme of reduction of Riemann integral equations for the zeta function to the Poincare--Riemann--Hilbert boundary-value problem allows us to construct effective estimates that describe the behaviour of the zeros of the zeta function very well. Nº de ref. del artículo: 9786138825197
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 385853107
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 52. Nº de ref. del artículo: 26377679436
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 52. Nº de ref. del artículo: 385175955
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 52. Nº de ref. del artículo: 18377679430
Cantidad disponible: 4 disponibles