Prediction models have reached to a stage where a single model is not sufficient to make predictions. Hence, to achieve better accuracy and performance, an ensemble of various models are being used. Gradient Boosting Algorithm has almost been the part of all ensembles. Winners of Kaggle Competition are swearing by this. Extreme Gradient Boosting is a step forward to this where we try to optimise the loss function. In this research work Squared Logistic Loss function is used with Boosting function which is expected to reduce bias and variance. The proposed model is applied on stock market data for the past ten years. Squared Logistic Loss function with XGBoost promises to be an effective approach in terms of accuracy and better prediction.
"Sinopsis" puede pertenecer a otra edición de este libro.
Prediction models have reached to a stage where a single model is not sufficient to make predictions. Hence, to achieve better accuracy and performance, an ensemble of various models are being used. Gradient Boosting Algorithm has almost been the part of all ensembles. Winners of Kaggle Competition are swearing by this. Extreme Gradient Boosting is a step forward to this where we try to optimise the loss function. In this research work Squared Logistic Loss function is used with Boosting function which is expected to reduce bias and variance. The proposed model is applied on stock market data for the past ten years. Squared Logistic Loss function with XGBoost promises to be an effective approach in terms of accuracy and better prediction.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Prediction models have reached to a stage where a single model is not sufficient to make predictions. Hence, to achieve better accuracy and performance, an ensemble of various models are being used. Gradient Boosting Algorithm has almost been the part of all ensembles. Winners of Kaggle Competition are swearing by this. Extreme Gradient Boosting is a step forward to this where we try to optimise the loss function. In this research work Squared Logistic Loss function is used with Boosting function which is expected to reduce bias and variance. The proposed model is applied on stock market data for the past ten years. Squared Logistic Loss function with XGBoost promises to be an effective approach in terms of accuracy and better prediction. 64 pp. Englisch. Nº de ref. del artículo: 9786138236122
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Prediction models have reached to a stage where a single model is not sufficient to make predictions. Hence, to achieve better accuracy and performance, an ensemble of various models are being used. Gradient Boosting Algorithm has almost been the part of all ensembles. Winners of Kaggle Competition are swearing by this. Extreme Gradient Boosting is a step forward to this where we try to optimise the loss function. In this research work Squared Logistic Loss function is used with Boosting function which is expected to reduce bias and variance. The proposed model is applied on stock market data for the past ten years. Squared Logistic Loss function with XGBoost promises to be an effective approach in terms of accuracy and better prediction. Nº de ref. del artículo: 9786138236122
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Sharma NonitaNonita Sharma is currently working as an Assistant Professor in the Department of Computer Science & Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar. Her research interests include Wireless Sen. Nº de ref. del artículo: 385846583
Cantidad disponible: Más de 20 disponibles
Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
Condición: New. 64 pp., paperback, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Nº de ref. del artículo: ZB1315164
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26394695473
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 401681646
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18394695483
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Prediction models have reached to a stage where a single model is not sufficient to make predictions. Hence, to achieve better accuracy and performance, an ensemble of various models are being used. Gradient Boosting Algorithm has almost been the part of all ensembles. Winners of Kaggle Competition are swearing by this. Extreme Gradient Boosting is a step forward to this where we try to optimise the loss function. In this research work Squared Logistic Loss function is used with Boosting function which is expected to reduce bias and variance. The proposed model is applied on stock market data for the past ten years. Squared Logistic Loss function with XGBoost promises to be an effective approach in terms of accuracy and better prediction.Books on Demand GmbH, Überseering 33, 22297 Hamburg 64 pp. Englisch. Nº de ref. del artículo: 9786138236122
Cantidad disponible: 2 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 64 pages. 8.66x5.91x0.15 inches. In Stock. Nº de ref. del artículo: zk6138236122
Cantidad disponible: 1 disponibles