Cet ouvrage traite de la Méthode des Multiplicateurs de Lagrange, qui est l'une des techniques les plus efficaces de l'Optimisation Différentiable et/ou Convexe. Cette dernière est elle-même l'une des branches les plus élaborées de l'Optimisation et s'occupe de la minimisation de fonctions objectif différentiables ou convexes ayant des variables qui sont contraintes à décrire des surfaces différentiables ou des ensembles convexes non ouverts avec bords empêchant l'application du théorème classique d'Euler. Mais, grâce à l'introduction du multiplicateur de Lagrange, on peut par exemple transformer un problème d'optimisation différentiable de fonction objectif F avec contrainte d'égalité {G(x)=0} en un problème d'optimisation globale de la fonction lagrangienne L définie par L(x,λ)=F(x)+λ•G(x). Un tel paramètre λ est le multiplicateur de Lagrange ou la variable duale et peut être un réel, un n-uplet de réels, ou une forme linéaire continue suivant que G soit à valeurs dans IR, IRⁿ ou dans un espace de fonctions. Les domaines d'application s'étendent au Contrôle Optimal (Recherche Opérationnelle), à la Télécommunication, aux Problèmes de Contact et de Friction, etc...
"Sinopsis" puede pertenecer a otra edición de este libro.
Cet ouvrage traite de la Méthode des Multiplicateurs de Lagrange, qui est l'une des techniques les plus efficaces de l'Optimisation Différentiable et/ou Convexe. Cette dernière est elle-même l'une des branches les plus élaborées de l'Optimisation et s'occupe de la minimisation de fonctions objectif différentiables ou convexes ayant des variables qui sont contraintes à décrire des surfaces différentiables ou des ensembles convexes non ouverts avec bords empêchant l'application du théorème classique d'Euler. Mais, grâce à l'introduction du multiplicateur de Lagrange, on peut par exemple transformer un problème d'optimisation différentiable de fonction objectif F avec contrainte d'égalité {G(x)=0} en un problème d'optimisation globale de la fonction lagrangienne L définie par L(x,λ)=F(x)+λ·G(x). Un tel paramètre λ est le multiplicateur de Lagrange ou la variable duale et peut être un réel, un n-uplet de réels, ou une forme linéaire continue suivant que G soit à valeurs dans IR, IRⁿ ou dans un espace de fonctions. Les domaines d'application s'étendent au Contrôle Optimal (Recherche Opérationnelle), à la Télécommunication, aux Problèmes de Contact et de Friction, etc...
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 5,05 gastos de envío desde Francia a España
Destinos, gastos y plazos de envíoEUR 0,77 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Solibri, Epone, Francia
Condición: fine. couverture souple, moyen format , très bon état. . 4024989 - Les multiplicateurs de lagrange en dimension finie, Collectif, Univ Européenne, 2013. Nº de ref. del artículo: 4024989
Cantidad disponible: 1 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9786131598241
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9786131598241_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9786131598241
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Cet ouvrage traite de la Méthode des Multiplicateurs de Lagrange, qui est l'une des techniques les plus efficaces de l'Optimisation Différentiable et/ou Convexe. Cette dernière est elle-même l'une des branches les plus élaborées de l'Optimisation et s'occupe de la minimisation de fonctions objectif différentiables ou convexes ayant des variables qui sont contraintes à décrire des surfaces différentiables ou des ensembles convexes non ouverts avec bords empêchant l'application du théorème classique d'Euler. Mais, grâce à l'introduction du multiplicateur de Lagrange, on peut par exemple transformer un problème d'optimisation différentiable de fonction objectif F avec contrainte d'égalité {G(x)=0} en un problème d'optimisation globale de la fonction lagrangienne L définie par L(x, )=F(x)+ -G(x). Un tel paramètre est le multiplicateur de Lagrange ou la variable duale et peut être un réel, un n-uplet de réels, ou une forme linéaire continue suivant que G soit à valeurs dans IR, IR ou dans un espace de fonctions. Les domaines d'application s'étendent au Contrôle Optimal (Recherche Opérationnelle), à la Télécommunication, aux Problèmes de Contact et de Friction, etc. 96 pp. Französisch. Nº de ref. del artículo: 9786131598241
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Cet ouvrage traite de la Méthode des Multiplicateurs de Lagrange, qui est l'une des techniques les plus efficaces de l'Optimisation Différentiable et/ou Convexe. Cette dernière est elle-même l'une des branches les plus élaborées de l'Optimisation et s'occupe de la minimisation de fonctions objectif différentiables ou convexes ayant des variables qui sont contraintes à décrire des surfaces différentiables ou des ensembles convexes non ouverts avec bords empêchant l'application du théorème classique d'Euler. Mais, grâce à l'introduction du multiplicateur de Lagrange, on peut par exemple transformer un problème d'optimisation différentiable de fonction objectif F avec contrainte d'égalité {G(x)=0} en un problème d'optimisation globale de la fonction lagrangienne L définie par L(x, )=F(x)+ -G(x). Un tel paramètre est le multiplicateur de Lagrange ou la variable duale et peut être un réel, un n-uplet de réels, ou une forme linéaire continue suivant que G soit à valeurs dans IR, IR ou dans un espace de fonctions. Les domaines d'application s'étendent au Contrôle Optimal (Recherche Opérationnelle), à la Télécommunication, aux Problèmes de Contact et de Friction, etc. Nº de ref. del artículo: 9786131598241
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 5801668
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9786131598241
Cantidad disponible: 2 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Cet ouvrage traite de la Méthode des Multiplicateurs de Lagrange, qui est l'une des techniques les plus efficaces de l'Optimisation Différentiable et/ou Convexe. Cette dernière est elle-même l'une des branches les plus élaborées de l'Optimisation et s'occupe de la minimisation de fonctions objectif différentiables ou convexes ayant des variables qui sont contraintes à décrire des surfaces différentiables ou des ensembles convexes non ouverts avec bords empêchant l'application du théorème classique d'Euler. Mais, grâce à l'introduction du multiplicateur de Lagrange, on peut par exemple transformer un problème d'optimisation différentiable de fonction objectif F avec contrainte d'égalité {G(x)=0} en un problème d'optimisation globale de la fonction lagrangienne L définie par L(x,¿)=F(x)+¿¿G(x). Un tel paramètre ¿ est le multiplicateur de Lagrange ou la variable duale et peut être un réel, un n-uplet de réels, ou une forme linéaire continue suivant que G soit à valeurs dans IR, IR¿ ou dans un espace de fonctions. Les domaines d¿application s¿étendent au Contrôle Optimal (Recherche Opérationnelle), à la Télécommunication, aux Problèmes de Contact et de Friction, etc.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 96 pp. Französisch. Nº de ref. del artículo: 9786131598241
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0316110206097
Cantidad disponible: Más de 20 disponibles