Artículos relacionados a Sylvester's Determinant Theorem: Sylvester's...

Sylvester's Determinant Theorem: Sylvester's Determinant Theorem, Matrix (mathematics), James Joseph Sylvester - Tapa blanda

 
9786131132124: Sylvester's Determinant Theorem: Sylvester's Determinant Theorem, Matrix (mathematics), James Joseph Sylvester

Esta edición ISBN ya no está disponible.

Reseña del editor

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In algebra, the determinant is a special number associated with any square matrix. The fundamental geometric meaning of a determinant is a scale factor for measure when the matrix is regarded as a linear transformation. Thus a 2 × 2 matrix with determinant 2 when applied to a set of points with finite area will transform those points into a set with twice the area. Determinants are important both in calculus, where they enter the substitution rule for several variables, and in multilinear algebra. A matrix is invertible if and only if its determinant is non-zero. The determinant of a matrix A, is denoted det(A), or without parentheses: det A. An alternative notation, used in the case where the matrix entries are written out in full, is to denote the determinant of a matrix by surrounding the matrix entries by vertical bars instead of the usual brackets or parentheses.

"Sobre este título" puede pertenecer a otra edición de este libro.

(Ningún ejemplar disponible)

Buscar:



Crear una petición

¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en AbeBooks, le avisaremos.

Crear una petición