In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of Magnetohydrodynamics (MHD) equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate Asymptotic Preserving (AP) schemes for kinetic equations and their ability to preserve stationary solutions. In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 5,14 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783958262102_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783958262102
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783958262102
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of Magnetohydrodynamics (MHD) equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate Asymptotic Preserving (AP) schemes for kinetic equations and their ability to preserve stationary solutions.In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature. 152 pp. Englisch. Nº de ref. del artículo: 9783958262102
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of Magnetohydrodynamics (MHD) equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate Asymptotic Preserving (AP) schemes for kinetic equations and their ability to preserve stationary solutions.In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature. Nº de ref. del artículo: 9783958262102
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783958262102
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of Magnetohydrodynamics (MHD) equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate Asymptotic Preserving (AP) schemes for kinetic equations and their ability to preserve stationary solutions.In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature.Books on Demand GmbH, Überseering 33, 22297 Hamburg 152 pp. Englisch. Nº de ref. del artículo: 9783958262102
Cantidad disponible: 2 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations | Farah Kanbar | Taschenbuch | Englisch | 2023 | Würzburg University Press | EAN 9783958262102 | Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 126906891
Cantidad disponible: 5 disponibles