Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This thesis considers the k-BALANCED PARTITIONING problem, which is defined as follows. Find the minimum number of edges in a graph that, when cut, partition the vertices into k (almost) equally sized sets. Amongst others, the problem derives its importance from the need to distribute data within a parallel-computing architecture. In this setting we are particularly interested in 2D finite element model (FEM) simulations. We therefore model the input as a regular quadrilateral tiling of the plane. More precisely, we focus on solid grid graphs. These are finite connected subgraphs of the infinite 2D grid without holes. However we also consider other graph classes. In particular, trees often give surprising conclusions to the problem on grid graphs. We provide several efficient algorithms computing provably good solutions. For the case when k=2 (the BISECTION problem) these include methods to compute optimal as well as approximate solutions. When k can take arbitrary values we provide two kinds of approximation algorithms. First we give a method that is fast but, for practical applications, has unsatisfactory approximation ratios. Additionally we provide an algorithm computing near-optimal solutions, which however is too slow to be used in practice. We also prove that the gained tradeoff between fast runtime and good approximation factors is unavoidable. For this we provide corresponding hardness results. 218 pp. Englisch. Nº de ref. del artículo: 9783954041251
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. KlappentextrnrnThis thesis considers the k-BALANCED PARTITIONING problem, which is defined as follows. Find the minimum number of edges in a graph that, when cut, partition the vertices into k (almost) equally sized sets. Amongst others, the pro. Nº de ref. del artículo: 146287275
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -This thesis considers the k-BALANCED PARTITIONING problem, which is defined as follows. Find the minimum number of edges in a graph that, when cut, partition the vertices into k (almost) equally sized sets. Amongst others, the problem derives its importance from the need to distribute data within a parallel-computing architecture. In this setting we are particularly interested in 2D finite element model (FEM) simulations. We therefore model the input as a regular quadrilateral tiling of the plane. More precisely, we focus on solid grid graphs. These are finite connected subgraphs of the infinite 2D grid without holes. However we also consider other graph classes. In particular, trees often give surprising conclusions to the problem on grid graphs. We provide several efficient algorithms computing provably good solutions. For the case when k=2 (the BISECTION problem) these include methods to compute optimal as well as approximate solutions. When k can take arbitrary values we provide two kinds of approximation algorithms. First we give a method that is fast but, for practical applications, has unsatisfactory approximation ratios. Additionally we provide an algorithm computing near-optimal solutions, which however is too slow to be used in practice. We also prove that the gained tradeoff between fast runtime and good approximation factors is unavoidable. For this we provide corresponding hardness results.Cuvillier Verlag, Nonnenstieg 8, 37075 Göttingen 218 pp. Englisch. Nº de ref. del artículo: 9783954041251
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This thesis considers the k-BALANCED PARTITIONING problem, which is defined as follows. Find the minimum number of edges in a graph that, when cut, partition the vertices into k (almost) equally sized sets. Amongst others, the problem derives its importance from the need to distribute data within a parallel-computing architecture. In this setting we are particularly interested in 2D finite element model (FEM) simulations. We therefore model the input as a regular quadrilateral tiling of the plane. More precisely, we focus on solid grid graphs. These are finite connected subgraphs of the infinite 2D grid without holes. However we also consider other graph classes. In particular, trees often give surprising conclusions to the problem on grid graphs. We provide several efficient algorithms computing provably good solutions. For the case when k=2 (the BISECTION problem) these include methods to compute optimal as well as approximate solutions. When k can take arbitrary values we provide two kinds of approximation algorithms. First we give a method that is fast but, for practical applications, has unsatisfactory approximation ratios. Additionally we provide an algorithm computing near-optimal solutions, which however is too slow to be used in practice. We also prove that the gained tradeoff between fast runtime and good approximation factors is unavoidable. For this we provide corresponding hardness results. Nº de ref. del artículo: 9783954041251
Cantidad disponible: 1 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Balanced Partitioning of Grids and Related Graphs. A Theoretical Study of Data Distribution in Parallel Finite Element Model Simulations | Andreas Emil Feldmann | Taschenbuch | Englisch | 2012 | Cuvillier | EAN 9783954041251 | Verantwortliche Person für die EU: Cuvillier Verlag, Nonnenstieg 8, 37075 Göttingen, info[at]cuvillier[dot]de | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 121577438
Cantidad disponible: 5 disponibles