Nonlinear state and parameter estimation of spatially distributed systems (Karlsruhe Series on Intelligent Sensor-Actuator-Systems, Universität Karlsruhe) - Tapa blanda

Sawo, Felix

 
9783866443709: Nonlinear state and parameter estimation of spatially distributed systems (Karlsruhe Series on Intelligent Sensor-Actuator-Systems, Universität Karlsruhe)

Sinopsis

In this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for identifying various model parameters. The Covariance Bounds Filter (CBF) allows the efficient estimation of widely distributed systems in a decentralized fashion.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

In this book two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for identifying various model parameters. The Covariance Bounds Filter (CBF) allows the efficient estimation of widely distributed systems in a decentralized fashion.

"Sobre este título" puede pertenecer a otra edición de este libro.