Over the last four decades, the legged robots had been widely investigated due to their better mobility and terrain adaptability characteristics, while moving on natural terrains. Kinematics, dynamics, stability and energy consumption analysis of different types of gaits are the key elements of study in the field of multi-legged robots’ locomotion. In the present book, a systematic analytical model has been developed to study the kinematics and dynamics along with energy efficiency and stability of a realistic six-legged robot, negotiating straight-forward, crab and turning motions. Moreover, soft computing-based models, namely back-propagation algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned coactive neuro-fuzzy inference systems and genetic algorithm-tuned back-propagation neural networks, have been developed to predict specific energy consumption and normalized energy stability margin in straight, crab and turning motions of the said robot. This book could be useful to researchers and technologists working in the field of mobile robots.
"Sinopsis" puede pertenecer a otra edición de este libro.
Over the last four decades, the legged robots had been widely investigated due to their better mobility and terrain adaptability characteristics, while moving on natural terrains. Kinematics, dynamics, stability and energy consumption analysis of different types of gaits are the key elements of study in the field of multi-legged robots' locomotion. In the present book, a systematic analytical model has been developed to study the kinematics and dynamics along with energy efficiency and stability of a realistic six-legged robot, negotiating straight-forward, crab and turning motions. Moreover, soft computing-based models, namely back-propagation algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned coactive neuro-fuzzy inference systems and genetic algorithm-tuned back-propagation neural networks, have been developed to predict specific energy consumption and normalized energy stability margin in straight, crab and turning motions of the said robot. This book could be useful to researchers and technologists working in the field of mobile robots.
Dr. Shibendu Shekhar Roy, Assistant Professor, Dept. of Mechanical Engineering, National Institute of Technology, Durgapur, India. Dr. Dilip Kumar Pratihar, Professor, Indian Institute of Technology, Kharagpur, India. He completed his post-doctoral studies in Germany under the AvH Fellowship Programme. Research areas: Robotics and Soft Computing.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,78 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Roy Shibendu ShekharDr. Shibendu Shekhar Roy, Assistant Professor, Dept. of Mechanical Engineering, National Institute of Technology, Durgapur, India. Dr. Dilip Kumar Pratihar, Professor, Indian Institute of Technology, Kharagpur, In. Nº de ref. del artículo: 5523055
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Over the last four decades, the legged robots had been widely investigated due to their better mobility and terrain adaptability characteristics, while moving on natural terrains. Kinematics, dynamics, stability and energy consumption analysis of different types of gaits are the key elements of study in the field of multi-legged robots¿ locomotion. In the present book, a systematic analytical model has been developed to study the kinematics and dynamics along with energy efficiency and stability of a realistic six-legged robot, negotiating straight-forward, crab and turning motions. Moreover, soft computing-based models, namely back-propagation algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned coactive neuro-fuzzy inference systems and genetic algorithm-tuned back-propagation neural networks, have been developed to predict specific energy consumption and normalized energy stability margin in straight, crab and turning motions of the said robot. This book could be useful to researchers and technologists working in the field of mobile robots. 204 pp. Englisch. Nº de ref. del artículo: 9783848449774
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Over the last four decades, the legged robots had been widely investigated due to their better mobility and terrain adaptability characteristics, while moving on natural terrains. Kinematics, dynamics, stability and energy consumption analysis of different types of gaits are the key elements of study in the field of multi-legged robots¿ locomotion. In the present book, a systematic analytical model has been developed to study the kinematics and dynamics along with energy efficiency and stability of a realistic six-legged robot, negotiating straight-forward, crab and turning motions. Moreover, soft computing-based models, namely back-propagation algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned coactive neuro-fuzzy inference systems and genetic algorithm-tuned back-propagation neural networks, have been developed to predict specific energy consumption and normalized energy stability margin in straight, crab and turning motions of the said robot. This book could be useful to researchers and technologists working in the field of mobile robots. Nº de ref. del artículo: 9783848449774
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Over the last four decades, the legged robots had been widely investigated due to their better mobility and terrain adaptability characteristics, while moving on natural terrains. Kinematics, dynamics, stability and energy consumption analysis of different types of gaits are the key elements of study in the field of multi-legged robots¿ locomotion. In the present book, a systematic analytical model has been developed to study the kinematics and dynamics along with energy efficiency and stability of a realistic six-legged robot, negotiating straight-forward, crab and turning motions. Moreover, soft computing-based models, namely back-propagation algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned multiple adaptive neuro-fuzzy inference systems; genetic algorithm-tuned coactive neuro-fuzzy inference systems and genetic algorithm-tuned back-propagation neural networks, have been developed to predict specific energy consumption and normalized energy stability margin in straight, crab and turning motions of the said robot. This book could be useful to researchers and technologists working in the field of mobile robots.Books on Demand GmbH, Überseering 33, 22297 Hamburg 204 pp. Englisch. Nº de ref. del artículo: 9783848449774
Cantidad disponible: 2 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA77338484497736
Cantidad disponible: 1 disponibles