The German Aerospace Center (DLR) is developing a new, holistic optical navigation system for all stages of spacecraft planetary approach and landing procedures. The central feature of this new navigation system is its landmark-based navigation. Commonly, craters are used as landmarks, as they exhibit very characteristic shapes and they are stable over the long term with respect to shape, structure and positioning. However, the flawless perception of these surface features by computers is a non-trivial task. A possibility of generating realistic surface images of celestial bodies with a significant number of craters and with well-known local illumination conditions is essential for the development of new navigation algorithms, as well as a technique for estimating the local illumination direction on these images. To date, no software exists to generate artificial renderings of realistically illuminated planetary surfaces while determining the local solar illumination direction. Having said this, a surface illumination simulation software for solid planetary surfaces with a significant number of craters has been developed within a master's thesis at the Merseburg University of Applied Sciences and the German Aerospace Center (DLR), whereas all work has been done in the context of the Moon. This software, the Moon Surface Illumination Simulation Framework (MSISF), is the first software known to produce realistic renderings of the entire Moon's surface from virtually every viewpoint, while simultaneously generating machine-readable information regarding the exactly known parameters for the environmental conditions, such as the local solar illumination angle for every pixel of a rendering showing a point on the Moon's surface. To produce its renderings, the MSISF maintains a global digital elevation model of the Moon, using the latest data sets from the ongoing NASA Lunar Reconnaissance Orbiter mission. The MSISF has also demonstrated its ability to not only produce s
"Sinopsis" puede pertenecer a otra edición de este libro.
René Schwarz is a research associate and GNC engineer at the Department of Navigation and Control Systems at the Institute of Space Systems of the German Aerospace Center (DLR). He received his master's degree in computer science/artificial intelligence from the Merseburg University of Applied Sciences, Germany, in 2012, as well as his bachelor's degree in mechatronics, industrial and physics technologies in 2009.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: medimops, Berlin, Alemania
Condición: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Nº de ref. del artículo: M03848216280-V
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 22697032/1
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The German Aerospace Center (DLR) is developing a new, holistic optical navigation system for all stages of spacecraft planetary approach and landing procedures. The central feature of this new navigation system is its landmark-based navigation. Commonly, craters are used as landmarks, as they exhibit very characteristic shapes and they are stable over the long term with respect to shape, structure and positioning. However, the flawless perception of these surface features by computers is a non-trivial task. A possibility of generating realistic surface images of celestial bodies with a significant number of craters and with well-known local illumination conditions is essential for the development of new navigation algorithms, as well as a technique for estimating the local illumination direction on these images. To date, no software exists to generate artificial renderings of realistically illuminated planetary surfaces while determining the local solar illumination direction. Having said this, a surface illumination simulation software for solid planetary surfaces with a significant number of craters has been developed within a master's thesis at the Merseburg University of Applied Sciences and the German Aerospace Center (DLR), whereas all work has been done in the context of the Moon. This software, the Moon Surface Illumination Simulation Framework (MSISF), is the first software known to produce realistic renderings of the entire Moon's surface from virtually every viewpoint, while simultaneously generating machine-readable information regarding the exactly known parameters for the environmental conditions, such as the local solar illumination angle for every pixel of a rendering showing a point on the Moon's surface.To produce its renderings, the MSISF maintains a global digital elevation model of the Moon, using the latest data sets from the ongoing NASA Lunar Reconnaissance Orbiter mission. The MSISF has also demonstrated its ability to not only produce single renderings, but also whole series of renderings corresponding to a virtual flight trajectory or landing on the Moon. The MSISF can also be modified for the rendering of other celestial bodies. This book shows how these renderings will be produced and how they will be suitable for the development and testing of new optical navigation algorithms; it is based upon the examination version of the original master's thesis. 212 pp. Englisch. Nº de ref. del artículo: 9783848216284
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The German Aerospace Center (DLR) is developing a new, holistic optical navigation system for all stages of spacecraft planetary approach and landing procedures. The central feature of this new navigation system is its landmark-based navigation. Commonly, craters are used as landmarks, as they exhibit very characteristic shapes and they are stable over the long term with respect to shape, structure and positioning. However, the flawless perception of these surface features by computers is a non-trivial task. A possibility of generating realistic surface images of celestial bodies with a significant number of craters and with well-known local illumination conditions is essential for the development of new navigation algorithms, as well as a technique for estimating the local illumination direction on these images. To date, no software exists to generate artificial renderings of realistically illuminated planetary surfaces while determining the local solar illumination direction. Having said this, a surface illumination simulation software for solid planetary surfaces with a significant number of craters has been developed within a master's thesis at the Merseburg University of Applied Sciences and the German Aerospace Center (DLR), whereas all work has been done in the context of the Moon. This software, the Moon Surface Illumination Simulation Framework (MSISF), is the first software known to produce realistic renderings of the entire Moon's surface from virtually every viewpoint, while simultaneously generating machine-readable information regarding the exactly known parameters for the environmental conditions, such as the local solar illumination angle for every pixel of a rendering showing a point on the Moon's surface.To produce its renderings, the MSISF maintains a global digital elevation model of the Moon, using the latest data sets from the ongoing NASA Lunar Reconnaissance Orbiter mission. The MSISF has also demonstrated its ability to not only produce single renderings, but also whole series of renderings corresponding to a virtual flight trajectory or landing on the Moon. The MSISF can also be modified for the rendering of other celestial bodies. This book shows how these renderings will be produced and how they will be suitable for the development and testing of new optical navigation algorithms; it is based upon the examination version of the original master's thesis. Nº de ref. del artículo: 9783848216284
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783848216284
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783848216284
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783848216284_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783848216284
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The German Aerospace Center (DLR) is developing a new, holistic optical navigation system for all stages of spacecraft planetary approach and landing procedures. The central feature of this new navigation system is its landmark-based navigation. Commonly, c. Nº de ref. del artículo: 5517172
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783848216284
Cantidad disponible: 10 disponibles