This work describes a representation of the spectral function for the Dirac operator, and includes an application of this representation to the problem of bounding the points of spectral concentration of the operator. Conditions on the potential function under which an absolutely continuous spectrum exists are given. A connection is made between the Dirac system and a Riccati equation, and the spectral derivative is expressed using a series solution of the Riccati equation. Conditions under which this series converges are given. The terms of the series are then differentiated to obtain a representation of the second derivative of the spectral function. The question of relative asymptotic sizes of the terms of this representation are addressed. The construction and application of the representation are similar to those used to investigate the spectrum of the Sturm-Liouville operator.
"Sinopsis" puede pertenecer a otra edición de este libro.
This work describes a representation of the spectral function for the Dirac operator, and includes an application of this representation to the problem of bounding the points of spectral concentration of the operator. Conditions on the potential function under which an absolutely continuous spectrum exists are given. A connection is made between the Dirac system and a Riccati equation, and the spectral derivative is expressed using a series solution of the Riccati equation. Conditions under which this series converges are given. The terms of the series are then differentiated to obtain a representation of the second derivative of the spectral function. The question of relative asymptotic sizes of the terms of this representation are addressed. The construction and application of the representation are similar to those used to investigate the spectrum of the Sturm-Liouville operator.
Dr. Joshua Eggenberger received his PhD in mathematical science from Northern Illinois University in 2010. He has taught undergraduate mathematics courses at NIU, Kishwaukee College, and Anoka-Ramsey Community College, and is currently an assistant professor at Ashford University in Clinton, Iowa.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,92 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This work describes a representation of the spectral function for the Dirac operator, and includes an application of this representation to the problem of bounding the points of spectral concentration of the operator. Conditions on the potential function under which an absolutely continuous spectrum exists are given. A connection is made between the Dirac system and a Riccati equation, and the spectral derivative is expressed using a series solution of the Riccati equation. Conditions under which this series converges are given. The terms of the series are then differentiated to obtain a representation of the second derivative of the spectral function. The question of relative asymptotic sizes of the terms of this representation are addressed. The construction and application of the representation are similar to those used to investigate the spectrum of the Sturm-Liouville operator. 72 pp. Englisch. Nº de ref. del artículo: 9783847337676
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Eggenberger Joshua T.Dr. Joshua Eggenberger received his PhD in mathematical science from Northern Illinois University in 2010. He has taught undergraduate mathematics courses at NIU, Kishwaukee College, and Anoka-Ramsey Community Co. Nº de ref. del artículo: 5511012
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This work describes a representation of the spectral function for the Dirac operator, and includes an application of this representation to the problem of bounding the points of spectral concentration of the operator. Conditions on the potential function under which an absolutely continuous spectrum exists are given. A connection is made between the Dirac system and a Riccati equation, and the spectral derivative is expressed using a series solution of the Riccati equation. Conditions under which this series converges are given. The terms of the series are then differentiated to obtain a representation of the second derivative of the spectral function. The question of relative asymptotic sizes of the terms of this representation are addressed. The construction and application of the representation are similar to those used to investigate the spectrum of the Sturm-Liouville operator. Nº de ref. del artículo: 9783847337676
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -This work describes a representation of the spectral function for the Dirac operator, and includes an application of this representation to the problem of bounding the points of spectral concentration of the operator. Conditions on the potential function under which an absolutely continuous spectrum exists are given. A connection is made between the Dirac system and a Riccati equation, and the spectral derivative is expressed using a series solution of the Riccati equation. Conditions under which this series converges are given. The terms of the series are then differentiated to obtain a representation of the second derivative of the spectral function. The question of relative asymptotic sizes of the terms of this representation are addressed. The construction and application of the representation are similar to those used to investigate the spectrum of the Sturm-Liouville operator.Books on Demand GmbH, Überseering 33, 22297 Hamburg 72 pp. Englisch. Nº de ref. del artículo: 9783847337676
Cantidad disponible: 2 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA796384733767X6
Cantidad disponible: 1 disponibles