Modeling is a helpful tool that might be used to predict the Dissolved Oxygen (DO) level of a lake. Most ecological systems are complex and unstable. In case black box models might be essential instead of deterministic ones. DO in Eymir Lake was modeled by using both Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS). Phosphate, Orthophospate, pH, Chlorophyll-a, Temperature, Alkalinity, Nitrate,Total Kjeldahl Nitrogen, Wind, Precipitation, Air Temperature were the input parameters of ANN and ANFIS. The aims of these modeling studies were: developing models with ANN to predict DO level in Lake Eymir with high fidelity to actual DO data, to compare the success of ANN and ANFIS on DO modeling, to determine the degree of dependence of different parameters on DO. “Matlab R 2007b” software was used. The results indicated that ANN has high prediction capacity of DO and ANFIS has low with respect to ANN. Failure of ANFIS was due to low functionality of Matlab ANFIS. For ANN Modeling effect of meteorological data on DO data on surface of the lake was successfully described and summer month super saturation DO concentrations were successfully predicted.
"Sinopsis" puede pertenecer a otra edición de este libro.
Modeling is a helpful tool that might be used to predict the Dissolved Oxygen (DO) level of a lake. Most ecological systems are complex and unstable. In case black box models might be essential instead of deterministic ones. DO in Eymir Lake was modeled by using both Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS). Phosphate, Orthophospate, pH, Chlorophyll-a, Temperature, Alkalinity, Nitrate,Total Kjeldahl Nitrogen, Wind, Precipitation, Air Temperature were the input parameters of ANN and ANFIS. The aims of these modeling studies were: developing models with ANN to predict DO level in Lake Eymir with high fidelity to actual DO data, to compare the success of ANN and ANFIS on DO modeling, to determine the degree of dependence of different parameters on DO. "Matlab R 2007b" software was used. The results indicated that ANN has high prediction capacity of DO and ANFIS has low with respect to ANN. Failure of ANFIS was due to low functionality of Matlab ANFIS. For ANN Modeling effect of meteorological data on DO data on surface of the lake was successfully described and summer month super saturation DO concentrations were successfully predicted.
Muhittin ASLAN has received his Master of Science Degree o Environmental Engineering in 2008 from METU. Currently he is working for Ministry of Environment and Urbanisation of Turkey. Also he has doctorate studies regarding social environmental sciences, environmental law and international relations in the scope of environmental politics of EU.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 29,75 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Aslan MuhittinMuhittin ASLAN has received his Master of Science Degree o Environmental Engineering in 2008 from METU. Currently he is working for Ministry of Environment and Urbanisation of Turkey. Also he has doctorate studies regar. Nº de ref. del artículo: 5497496
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Modeling is a helpful tool that might be used to predict the Dissolved Oxygen (DO) level of a lake. Most ecological systems are complex and unstable. In case black box models might be essential instead of deterministic ones. DO in Eymir Lake was modeled by using both Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS). Phosphate, Orthophospate, pH, Chlorophyll-a, Temperature, Alkalinity, Nitrate,Total Kjeldahl Nitrogen, Wind, Precipitation, Air Temperature were the input parameters of ANN and ANFIS. The aims of these modeling studies were: developing models with ANN to predict DO level in Lake Eymir with high fidelity to actual DO data, to compare the success of ANN and ANFIS on DO modeling, to determine the degree of dependence of different parameters on DO. Matlab R 2007b software was used. The results indicated that ANN has high prediction capacity of DO and ANFIS has low with respect to ANN. Failure of ANFIS was due to low functionality of Matlab ANFIS. For ANN Modeling effect of meteorological data on DO data on surface of the lake was successfully described and summer month super saturation DO concentrations were successfully predicted. 140 pp. Englisch. Nº de ref. del artículo: 9783846537084
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Modeling is a helpful tool that might be used to predict the Dissolved Oxygen (DO) level of a lake. Most ecological systems are complex and unstable. In case black box models might be essential instead of deterministic ones. DO in Eymir Lake was modeled by using both Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS). Phosphate, Orthophospate, pH, Chlorophyll-a, Temperature, Alkalinity, Nitrate,Total Kjeldahl Nitrogen, Wind, Precipitation, Air Temperature were the input parameters of ANN and ANFIS. The aims of these modeling studies were: developing models with ANN to predict DO level in Lake Eymir with high fidelity to actual DO data, to compare the success of ANN and ANFIS on DO modeling, to determine the degree of dependence of different parameters on DO. Matlab R 2007b software was used. The results indicated that ANN has high prediction capacity of DO and ANFIS has low with respect to ANN. Failure of ANFIS was due to low functionality of Matlab ANFIS. For ANN Modeling effect of meteorological data on DO data on surface of the lake was successfully described and summer month super saturation DO concentrations were successfully predicted. Nº de ref. del artículo: 9783846537084
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 140. Nº de ref. del artículo: 2698282696
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 140 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Nº de ref. del artículo: 95163159
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 1898282690
Cantidad disponible: 4 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA758384653708X6
Cantidad disponible: 1 disponibles