In this book, we study optimization models for health care under uncertainty and resource constraints. In particular, we study two problems. The first problem is the multi-shift Vehicle Routing Problem (MSVRP) with overtime to meet around-the-clock demand. We use insertion to create the initial routes and then use tabu search to improve the routes. We show that our algorithm can find high-quality solutions for very large problems. The second problem is a multi-city resource allocation model to distribute the medical supplies in order to minimize the total number of fatalities in an infectious disease outbreak. We consider the problem with uncertainty in the initial number of cases and transmission rate, and build a two-stage stochastic programming model. To solve instances of realistic size we use a heuristic based on Benders decomposition. Finally, we use sample average approximation (SAA) to get confidence intervals on the optimal solution. We illustrate the use of the model and the solution technique in planning an emergency response to a hypothetic national smallpox outbreak. Computations show that the algorithm is efficient and can obtain near-optimal solution.
"Sinopsis" puede pertenecer a otra edición de este libro.
In this book, we study optimization models for health care under uncertainty and resource constraints. In particular, we study two problems. The first problem is the multi-shift Vehicle Routing Problem (MSVRP) with overtime to meet around-the-clock demand. We use insertion to create the initial routes and then use tabu search to improve the routes. We show that our algorithm can find high-quality solutions for very large problems. The second problem is a multi-city resource allocation model to distribute the medical supplies in order to minimize the total number of fatalities in an infectious disease outbreak. We consider the problem with uncertainty in the initial number of cases and transmission rate, and build a two-stage stochastic programming model. To solve instances of realistic size we use a heuristic based on Benders decomposition. Finally, we use sample average approximation (SAA) to get confidence intervals on the optimal solution. We illustrate the use of the model and the solution technique in planning an emergency response to a hypothetic national smallpox outbreak. Computations show that the algorithm is efficient and can obtain near-optimal solution.
Yingtao Ren obtained his PhD in Operations Research and MS in Computer Science from University of Southern California. His research interests focus on developing efficient algorithms and optimization models for large scale real world problems in transportation, logistics and health care. He is currently employed as a research scientist in industry.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this book, we study optimization models for health care under uncertainty and resource constraints. In particular, we study two problems. The first problem is the multi-shift Vehicle Routing Problem (MSVRP) with overtime to meet around-the-clock demand. We use insertion to create the initial routes and then use tabu search to improve the routes. We show that our algorithm can find high-quality solutions for very large problems. The second problem is a multi-city resource allocation model to distribute the medical supplies in order to minimize the total number of fatalities in an infectious disease outbreak. We consider the problem with uncertainty in the initial number of cases and transmission rate, and build a two-stage stochastic programming model. To solve instances of realistic size we use a heuristic based on Benders decomposition. Finally, we use sample average approximation (SAA) to get confidence intervals on the optimal solution. We illustrate the use of the model and the solution technique in planning an emergency response to a hypothetic national smallpox outbreak. Computations show that the algorithm is efficient and can obtain near-optimal solution. 120 pp. Englisch. Nº de ref. del artículo: 9783846512067
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 120. Nº de ref. del artículo: 2698743936
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 120 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Nº de ref. del artículo: 93653343
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 120. Nº de ref. del artículo: 1898743946
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Ren YingtaoYingtao Ren obtained his PhD in Operations Research and MS in Computer Science from University of Southern California. His research interests focus on developing efficient algorithms and optimization models for large scale. Nº de ref. del artículo: 5495745
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -In this book, we study optimization models for health care under uncertainty and resource constraints. In particular, we study two problems. The first problem is the multi-shift Vehicle Routing Problem (MSVRP) with overtime to meet around-the-clock demand. We use insertion to create the initial routes and then use tabu search to improve the routes. We show that our algorithm can find high-quality solutions for very large problems. The second problem is a multi-city resource allocation model to distribute the medical supplies in order to minimize the total number of fatalities in an infectious disease outbreak. We consider the problem with uncertainty in the initial number of cases and transmission rate, and build a two-stage stochastic programming model. To solve instances of realistic size we use a heuristic based on Benders decomposition. Finally, we use sample average approximation (SAA) to get confidence intervals on the optimal solution. We illustrate the use of the model and the solution technique in planning an emergency response to a hypothetic national smallpox outbreak. Computations show that the algorithm is efficient and can obtain near-optimal solution.Books on Demand GmbH, Überseering 33, 22297 Hamburg 120 pp. Englisch. Nº de ref. del artículo: 9783846512067
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In this book, we study optimization models for health care under uncertainty and resource constraints. In particular, we study two problems. The first problem is the multi-shift Vehicle Routing Problem (MSVRP) with overtime to meet around-the-clock demand. We use insertion to create the initial routes and then use tabu search to improve the routes. We show that our algorithm can find high-quality solutions for very large problems. The second problem is a multi-city resource allocation model to distribute the medical supplies in order to minimize the total number of fatalities in an infectious disease outbreak. We consider the problem with uncertainty in the initial number of cases and transmission rate, and build a two-stage stochastic programming model. To solve instances of realistic size we use a heuristic based on Benders decomposition. Finally, we use sample average approximation (SAA) to get confidence intervals on the optimal solution. We illustrate the use of the model and the solution technique in planning an emergency response to a hypothetic national smallpox outbreak. Computations show that the algorithm is efficient and can obtain near-optimal solution. Nº de ref. del artículo: 9783846512067
Cantidad disponible: 1 disponibles