En los últimos años de modernidad se ha generado una revolución en la digitalización de la información: datos numéricos y documentos. La minería de texto es una respuesta a la necesidad de manipular el texto adecuadamente. La visualización de datos es una herramienta de la minería de texto que permite obtener una representación gráfica de la información en alta dimensión. En este documento se presenta un modelo de separación de documentos por clases (tópicos) e identificación de estructuras: conglomerados (cluster), sub-conglomerados y valores atípicos (VA- Outliers). Se definen los conceptos de ruido y VA en documentos, también se propone una clasificación de VA basados en el tipo de palabras utilizadas (de propósito particular, general o compartidas). De los diferentes algoritmos de proyección de datos el de generación de mapas topográficos (GTM) ha tomado gran importancia en el marco probabilístico. Se presentan dos algoritmos: uno para la proyección y visualización de documentos (VL-ZIP) y otro para la separación de clases. El algoritmo VL-ZIP considera aplicar la función de distribución inflación de ceros con Poisson (ZIP) y un nuevo espacio latente.
"Sinopsis" puede pertenecer a otra edición de este libro.
En los últimos años de modernidad se ha generado una revolución en la digitalización de la información: datos numéricos y documentos. La minería de texto es una respuesta a la necesidad de manipular el texto adecuadamente. La visualización de datos es una herramienta de la minería de texto que permite obtener una representación gráfica de la información en alta dimensión. En este documento se presenta un modelo de separación de documentos por clases (tópicos) e identificación de estructuras: conglomerados (cluster), sub-conglomerados y valores atípicos (VA- Outliers). Se definen los conceptos de ruido y VA en documentos, también se propone una clasificación de VA basados en el tipo de palabras utilizadas (de propósito particular, general o compartidas). De los diferentes algoritmos de proyección de datos el de generación de mapas topográficos (GTM) ha tomado gran importancia en el marco probabilístico. Se presentan dos algoritmos: uno para la proyección y visualización de documentos (VL-ZIP) y otro para la separación de clases. El algoritmo VL-ZIP considera aplicar la función de distribución inflación de ceros con Poisson (ZIP) y un nuevo espacio latente.
Doctora en Ciencias en Ciencias de la Computación (2009); en el 2009 cursó una especialidad de Educación basada en Competencias y en 1999 cursó una especialidad en Educación y asesoría de calidad. Desde el año 1998 ha sido profesora; actualmente trabaja como profesora en un Instituto Tecnológico impartiendo clases en Licenciatura y Maestría.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -En los últimos años de modernidad se ha generado una revolución en la digitalización de la información: datos numéricos y documentos. La minería de texto es una respuesta a la necesidad de manipular el texto adecuadamente. La visualización de datos es una herramienta de la minería de texto que permite obtener una representación gráfica de la información en alta dimensión. En este documento se presenta un modelo de separación de documentos por clases (tópicos) e identificación de estructuras: conglomerados (cluster), sub-conglomerados y valores atípicos (VA- Outliers). Se definen los conceptos de ruido y VA en documentos, también se propone una clasificación de VA basados en el tipo de palabras utilizadas (de propósito particular, general o compartidas). De los diferentes algoritmos de proyección de datos el de generación de mapas topográficos (GTM) ha tomado gran importancia en el marco probabilístico. Se presentan dos algoritmos: uno para la proyección y visualización de documentos (VL-ZIP) y otro para la separación de clases. El algoritmo VL-ZIP considera aplicar la función de distribución inflación de ceros con Poisson (ZIP) y un nuevo espacio latente. 116 pp. Spanisch. Nº de ref. del artículo: 9783845487991
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - En los últimos años de modernidad se ha generado una revolución en la digitalización de la información: datos numéricos y documentos. La minería de texto es una respuesta a la necesidad de manipular el texto adecuadamente. La visualización de datos es una herramienta de la minería de texto que permite obtener una representación gráfica de la información en alta dimensión. En este documento se presenta un modelo de separación de documentos por clases (tópicos) e identificación de estructuras: conglomerados (cluster), sub-conglomerados y valores atípicos (VA- Outliers). Se definen los conceptos de ruido y VA en documentos, también se propone una clasificación de VA basados en el tipo de palabras utilizadas (de propósito particular, general o compartidas). De los diferentes algoritmos de proyección de datos el de generación de mapas topográficos (GTM) ha tomado gran importancia en el marco probabilístico. Se presentan dos algoritmos: uno para la proyección y visualización de documentos (VL-ZIP) y otro para la separación de clases. El algoritmo VL-ZIP considera aplicar la función de distribución inflación de ceros con Poisson (ZIP) y un nuevo espacio latente. Nº de ref. del artículo: 9783845487991
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 5485293
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -En los últimos años de modernidad se ha generado una revolución en la digitalización de la información: datos numéricos y documentos. La minería de texto es una respuesta a la necesidad de manipular el texto adecuadamente. La visualización de datos es una herramienta de la minería de texto que permite obtener una representación gráfica de la información en alta dimensión. En este documento se presenta un modelo de separación de documentos por clases (tópicos) e identificación de estructuras: conglomerados (cluster), sub-conglomerados y valores atípicos (VA- Outliers). Se definen los conceptos de ruido y VA en documentos, también se propone una clasificación de VA basados en el tipo de palabras utilizadas (de propósito particular, general o compartidas). De los diferentes algoritmos de proyección de datos el de generación de mapas topográficos (GTM) ha tomado gran importancia en el marco probabilístico. Se presentan dos algoritmos: uno para la proyección y visualización de documentos (VL-ZIP) y otro para la separación de clases. El algoritmo VL-ZIP considera aplicar la función de distribución inflación de ceros con Poisson (ZIP) y un nuevo espacio latente.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 116 pp. Spanisch. Nº de ref. del artículo: 9783845487991
Cantidad disponible: 2 disponibles