Artículos relacionados a Applied Machine Learning for Solar Data Processing:...

Applied Machine Learning for Solar Data Processing: Developing Automated Technologies for Knowledge Extraction and Prediction of Solar Activities using Machine Learning - Tapa blanda

 
9783845477763: Applied Machine Learning for Solar Data Processing: Developing Automated Technologies for Knowledge Extraction and Prediction of Solar Activities using Machine Learning

Sinopsis

It is becoming increasingly important to understand the possible cause and effect relationships between these solar events and features to produce timely and reliable computer-based forecasting of extreme solar events. These forecasts are very important for protecting our technological infra-structures and human life on earth and in space. The need to develop automated tools to process solar data is also increasing because existing space missions are sending huge amounts of data and scientists back on Earth are struggling to keep pace. In this book, we present our research work introducing novel, fully computerised, machine learning-based decision rules and models that can be used within a system design for automated space weather forecasting. The system design in this book consists of three stages: (1) designing computer tools to find the associations among solar events and features (2) applying machine learning algorithms to the associations’ datasets and (3) studying the evolution patterns of sunspot groups using time-series methods.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

It is becoming increasingly important to understand the possible cause and effect relationships between these solar events and features to produce timely and reliable computer-based forecasting of extreme solar events. These forecasts are very important for protecting our technological infra-structures and human life on earth and in space. The need to develop automated tools to process solar data is also increasing because existing space missions are sending huge amounts of data and scientists back on Earth are struggling to keep pace. In this book, we present our research work introducing novel, fully computerised, machine learning-based decision rules and models that can be used within a system design for automated space weather forecasting. The system design in this book consists of three stages: (1) designing computer tools to find the associations among solar events and features (2) applying machine learning algorithms to the associations' datasets and (3) studying the evolution patterns of sunspot groups using time-series methods.

Biografía del autor

Dr. Alomari is an Assistant Prof. of IT in ASU, Jordan. BEng(2005) & MEng(2006) in EE from JUST, Jordan & PhD(2009) from UoB, UK. Dr. Qahwaji is a Reader in Visual Computing in UoB, UK. BSc(1994) & MSc(1997) in EE from UoM, Iraq & PhD(2002) from UoB, UK. Dr. Ipson is a Senior Lecturer in UoB, UK. BSc in Applied Physics & PhD in Nuclear Physics.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Like New
Ver este artículo

EUR 28,91 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Applied Machine Learning for Solar Data Processing:...

Imagen del vendedor

Mohammad H. Alomari|Rami S. Qahwaji|Stanley S. Ipson
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3845477768 ISBN 13: 9783845477763
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Alomari Mohammad H.Dr. Alomari is an Assistant Prof. of IT in ASU, Jordan. BEng(2005) & MEng(2006) in EE from JUST, Jordan & PhD(2009) from UoB, UK. Dr. Qahwaji is a Reader in Visual Computing in UoB, UK. BSc(1994) & MSc(1997) in EE . Nº de ref. del artículo: 5484376

Contactar al vendedor

Comprar nuevo

EUR 48,50
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Mohammad H. Alomari
ISBN 10: 3845477768 ISBN 13: 9783845477763
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -It is becoming increasingly important to understand the possible cause and effect relationships between these solar events and features to produce timely and reliable computer-based forecasting of extreme solar events. These forecasts are very important for protecting our technological infra-structures and human life on earth and in space. The need to develop automated tools to process solar data is also increasing because existing space missions are sending huge amounts of data and scientists back on Earth are struggling to keep pace. In this book, we present our research work introducing novel, fully computerised, machine learning-based decision rules and models that can be used within a system design for automated space weather forecasting. The system design in this book consists of three stages: (1) designing computer tools to find the associations among solar events and features (2) applying machine learning algorithms to the associations datasets and (3) studying the evolution patterns of sunspot groups using time-series methods. 152 pp. Englisch. Nº de ref. del artículo: 9783845477763

Contactar al vendedor

Comprar nuevo

EUR 59,00
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Mohammad H. Alomari
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3845477768 ISBN 13: 9783845477763
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - It is becoming increasingly important to understand the possible cause and effect relationships between these solar events and features to produce timely and reliable computer-based forecasting of extreme solar events. These forecasts are very important for protecting our technological infra-structures and human life on earth and in space. The need to develop automated tools to process solar data is also increasing because existing space missions are sending huge amounts of data and scientists back on Earth are struggling to keep pace. In this book, we present our research work introducing novel, fully computerised, machine learning-based decision rules and models that can be used within a system design for automated space weather forecasting. The system design in this book consists of three stages: (1) designing computer tools to find the associations among solar events and features (2) applying machine learning algorithms to the associations datasets and (3) studying the evolution patterns of sunspot groups using time-series methods. Nº de ref. del artículo: 9783845477763

Contactar al vendedor

Comprar nuevo

EUR 59,00
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Mohammad H. Alomari
ISBN 10: 3845477768 ISBN 13: 9783845477763
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -It is becoming increasingly important to understand the possible cause and effect relationships between these solar events and features to produce timely and reliable computer-based forecasting of extreme solar events. These forecasts are very important for protecting our technological infra-structures and human life on earth and in space. The need to develop automated tools to process solar data is also increasing because existing space missions are sending huge amounts of data and scientists back on Earth are struggling to keep pace. In this book, we present our research work introducing novel, fully computerised, machine learning-based decision rules and models that can be used within a system design for automated space weather forecasting. The system design in this book consists of three stages: (1) designing computer tools to find the associations among solar events and features (2) applying machine learning algorithms to the associations¿ datasets and (3) studying the evolution patterns of sunspot groups using time-series methods.Books on Demand GmbH, Überseering 33, 22297 Hamburg 152 pp. Englisch. Nº de ref. del artículo: 9783845477763

Contactar al vendedor

Comprar nuevo

EUR 59,00
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Alomari, Mohammad H., Qahwaji, Rami S., Ipson, Stanley S.
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3845477768 ISBN 13: 9783845477763
Antiguo o usado Paperback

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA79638454777686

Contactar al vendedor

Comprar usado

EUR 120,30
Convertir moneda
Gastos de envío: EUR 28,91
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito