MA-Thesis / Master, die am 01.05.1995 erfolgreich an einer Universität in USA eingereicht wurde. Abstract: In the 1980s research efforts and successes made artificial neural networks popular. Since the 1990s engineers have been using this foundation for problem solving. But artifiial neural network solutions for "real-world" problems are sometimes hard to find because of the complexity of the domain and because of the vast number of design attributes the engineer has to deal with. This thesis provides a structured overview of attributes in the design process of artificial neural networks and reviews technical process models. Current development methods for artificial neural networks are then reviewed and critiqued. The thesis concludes with a new design and development method for artificial neural networks. Table of Contents: |List of figures|x |List of tables|xi |Introduction|1 1.|Design attributes in ANN|3 1.1|ANN models|4 1.1.1|Node level|7 1.1.2|Network level|9 1.1.3|Training level|9 1.2|Data and data representation|10 1.3|Global system design|12 1.4|Hardware and software implementation|13 1.5|Characteristics of ANNs|15 1.5.1|Advantages of ANNs|15 1.5.2|Limitations and concerns|16 2.|Technical process models and engineering methods|18 2.1|Why use an engineering method?|18 2.2|Evolutionary model of engineering discipline|20 2.3|Overview of technical process models|22 2.3.1|Taxonomy of technical process models|24 2.3.2|Prototyping|25 2.3.3|Incremental method|26 2.3.4|Strict contractual approach|26 2.3.5|Deciding on process models and methods|26 2.3.6|Examples of process models|27 2.3.7|Representation of process models|27 2.4|Quality criteria of process models|29 3.|Current engineering methods for ANNs|30 3.1|Why a special method for ANNs?|30 3.1.1|Are conventional engineering methodologies suitable for ANNs?|30 3.2|Methods for expert systems|31 3.3|System identication methods|35 3.4|Bailey an
"Sinopsis" puede pertenecer a otra edición de este libro.
Inhaltsangabe:Abstract: In the 1980s research efforts and successes made artificial neural networks popular. Since the 1990s engineers have been using this foundation for problem solving. But artifiial neural network solutions for "real-world" problems are sometimes hard to find because of the complexity of the domain and because of the vast number of design attributes the engineer has to deal with. This thesis provides a structured overview of attributes in the design process of artificial neural networks and reviews technical process models. Current development methods for artificial neural networks are then reviewed and critiqued. The thesis concludes with a new design and development method for artificial neural networks. Inhaltsverzeichnis:Table of Contents: List of figuresx List of tablesxi Introduction1 1.Design attributes in ANN3 1.1ANN models4 1.1.1Node level7 1.1.2Network level9 1.1.3Training level9 1.2Data and data representation10 1.3Global system design12 1.4Hardware and software implementation13 1.5Characteristics of ANNs15 1.5.1Advantages of ANNs15 1.5.2Limitations and concerns16 2.Technical process models and engineering methods18 2.1Why use an engineering method?18 2.2Evolutionary model of engineering discipline20 2.3Overview of technical process models22 2.3.1Taxonomy of technical process models24 2.3.2Prototyping25 2.3.3Incremental method26 2.3.4Strict contractual approach26 2.3.5Deciding on process models and methods26 2.3.6Examples of process models27 2.3.7Representation of process models27 2.4Quality criteria of process models29 3.Current engineering methods for ANNs30 3.1Why a special method for ANNs?30 3.1.1Are conventional engineering methodologies suitable for ANNs?30 3.2Methods for expert systems31 3.3System identication methods35 3.4Bailey and Thompson37 3.4.1Criticism43 3.5Medsker and Liebowitz44 3.6Jones and Franklin45 3.7Schalko47 3.8Karayiannis and Nicolaos48 3.8.1Criticism49 3.9Nelson and
MA-Thesis / Master, die am 01.05.1995 erfolgreich an einer Universität in USA eingereicht wurde. Abstract: In the 1980s research efforts and successes made artificial neural networks popular. Since the 1990s engineers have been using this foundation for problem solving. But artifiial neural network solutions for "real-world" problems are sometimes hard to find because of the complexity of the domain and because of the vast number of design attributes the engineer has to deal with. This thesis provides a structured overview of attributes in the design process of artificial neural networks and reviews technical process models. Current development methods for artificial neural networks are then reviewed and critiqued. The thesis concludes with a new design and development method for artificial neural networks. Table of Contents: |List of figures|x |List of tables|xi |Introduction|1 1.|Design attributes in ANN|3 1.1|ANN models|4 1.1.1|Node level|7 1.1.2|Network level|9 1.1.3|Training level|9 1.2|Data and data representation|10 1.3|Global system design|12 1.4|Hardware and software implementation|13 1.5|Characteristics of ANNs|15 1.5.1|Advantages of ANNs|15 1.5.2|Limitations and concerns|16 2.|Technical process models and engineering methods|18 2.1|Why use an engineering method?|18 2.2|Evolutionary model of engineering discipline|20 2.3|Overview of technical process models|22 2.3.1|Taxonomy of technical process models|24 2.3.2|Prototyping|25 2.3.3|Incremental method|26 2.3.4|Strict contractual approach|26 2.3.5|Deciding on process models and methods|26 2.3.6|Examples of process models|27 2.3.7|Representation of process models|27 2.4|Quality criteria of process models|29 3.|Current engineering methods for ANNs|30 3.1|Why a special method for ANNs?|30 3.1.1|Are conventional engineering methodologies suitable for ANNs?|30 3.2|Methods for expert systems|31 3.3|System identication methods|35 3.4|Bailey an
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,85 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Master's Thesis from the year 1995 in the subject Engineering - Artificial Intelligence, University of Massachusetts - Dartmouth (Unbekannt), language: English, abstract: Inhaltsangabe:Abstract:In the 1980s research efforts and successes made artificial neural networks popular. Since the 1990s engineers have been using this foundation for problem solving. But artifiial neural network solutions for 'real-world' problems are sometimes hard to find because of the complexity of the domain and because of the vast number of design attributes the engineer has to deal with.This thesis provides a structured overview of attributes in the design process of artificial neural networks and reviews technical process models. Current development methods for artificial neural networks are then reviewed and critiqued. The thesis concludes with a new design and development method for artificial neural networks.Inhaltsverzeichnis:Table of Contents:List of figuresxList of tablesxiIntroduction11.Design attributes in ANN31.1ANN models41.1.1Node level71.1.2Network level91.1.3Training level91.2Data and data representation101.3Global system design121.4Hardware and software implementation131.5Characteristics of ANNs151.5.1Advantages of ANNs151.5.2Limitations and concerns162.Technical process models and engineering methods182.1Why use an engineering method 182.2Evolutionary model of engineering discipline202.3Overview of technical process models222.3.1Taxonomy of technical process models242.3.2Prototyping252.3.3Incremental method262.3.4Strict contractual approach262.3.5Deciding on process models and methods262.3.6Examples of process models272.3.7Representation of process models272.4Quality criteria of process models293.Current engineering methods for ANNs303.1Why a special method for ANNs 303.1.1Are conventional engineering methodologies suitable for ANNs 303.2Methods for expert systems313.3System identication methods353.4Bailey and Thompson373.4.1Criticism433.5Medsker and Liebowitz443.6Jones and Franklin453.7Schalko473.8Karayiannis and Nicolaos483.8.1Criticism493.9Nelson and Illingworth503.9.1Criticism513.10Whittington and Spracklen523.10.1Criticism563.11Lawrence and Andriola573.11.1Criticism583.12General criticism of current methodologies584.Proposed design and development method604.1Development process614.1.1Requirement analysis654.1.2Specication684.1.3Data and domain analysis704.1.4Architectural design764.1.5Detailed ANN design844.1.6ANN implementation924.1.7Training934.1.8Monitoring training944.1.9ANN quality evaluation954.1.10ANN verication and validation954.1.11System link964.1.12System verication and validation974.1.13Delivery and production974.1.14Maintenance974.2Risk analysis984.2.1Engineers logbook1004.2.2Review of stage results1014.3Reuse1014.4Integration of ANN development1044.5Criticism104Conclusion107Appendix109Bibliography111 144 pp. Englisch. Nº de ref. del artículo: 9783838620213
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Master's Thesis from the year 1995 in the subject Engineering - Artificial Intelligence, University of Massachusetts - Dartmouth (Unbekannt), language: English, abstract: Inhaltsangabe:Abstract:In the 1980s research efforts and successes made artificial neural networks popular. Since the 1990s engineers have been using this foundation for problem solving. But artifiial neural network solutions for 'real-world' problems are sometimes hard to find because of the complexity of the domain and because of the vast number of design attributes the engineer has to deal with.This thesis provides a structured overview of attributes in the design process of artificial neural networks and reviews technical process models. Current development methods for artificial neural networks are then reviewed and critiqued. The thesis concludes with a new design and development method for artificial neural networks.Inhaltsverzeichnis:Table of Contents:List of figuresxList of tablesxiIntroduction11.Design attributes in ANN31.1ANN models41.1.1Node level71.1.2Network level91.1.3Training level91.2Data and data representation101.3Global system design121.4Hardware and software implementation131.5Characteristics of ANNs151.5.1Advantages of ANNs151.5.2Limitations and concerns162.Technical process models and engineering methods182.1Why use an engineering method 182.2Evolutionary model of engineering discipline202.3Overview of technical process models222.3.1Taxonomy of technical process models242.3.2Prototyping252.3.3Incremental method262.3.4Strict contractual approach262.3.5Deciding on process models and methods262.3.6Examples of process models272.3.7Representation of process models272.4Quality criteria of process models293.Current engineering methods for ANNs303.1Why a special method for ANNs 303.1.1Are conventional engineering methodologies suitable for ANNs 303.2Methods for expert systems313.3System identication methods353.4Bailey and Thompson373.4.1Criticism433.5Medsker and Liebowitz443.6Jones and Franklin453.7Schalko473.8Karayiannis and Nicolaos483.8.1Criticism493.9Nelson and Illingworth503.9.1Criticism513.10Whittington and Spracklen523.10.1Criticism563.11Lawrence and Andriola573.11.1Criticism583.12General criticism of current methodologies584.Proposed design and development method604.1Development process614.1.1Requirement analysis654.1.2Specication684.1.3Data and domain analysis704.1.4Architectural design764.1.5Detailed ANN design844.1.6ANN implementation924.1.7Training934.1.8Monitoring training944.1.9ANN quality evaluation954.1.10ANN verication and validation954.1.11System link964.1.12System verication and validation974.1.13Delivery and production974.1.14Maintenance974.2Risk analysis984.2.1Engineers logbook1004.2.2Review of stage results1014.3Reuse1014.4Integration of ANN development1044.5Criticism104Conclusion107Appendix109Bibliography111. Nº de ref. del artículo: 9783838620213
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Master s Thesis from the year 1995 in the subject Engineering - Artificial Intelligence, University of Massachusetts - Dartmouth (Unbekannt), language: English, abstract: Inhaltsangabe:Abstract:In the 1980s research efforts and successes made artifici. Nº de ref. del artículo: 5421997
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Inhaltsangabe:Abstract:In the 1980s research efforts and successes made artificial neural networks popular. Since the 1990s engineers have been using this foundation for problem solving. But artifiial neural network solutions for 'real-world' problems are sometimes hard to find because of the complexity of the domain and because of the vast number of design attributes the engineer has to deal with.This thesis provides a structured overview of attributes in the design process of artificial neural networks and reviews technical process models. Current development methods for artificial neural networks are then reviewed and critiqued. The thesis concludes with a new design and development method for artificial neural networks.Inhaltsverzeichnis:Table of Contents:List of figuresxList of tablesxiIntroduction11.Design attributes in ANN31.1ANN models41.1.1Node level71.1.2Network level91.1.3Training level91.2Data and data representation101.3Global system design121.4Hardware and software implementation131.5Characteristics of ANNs151.5.1Advantages of ANNs151.5.2Limitations and concerns162.Technical process models and engineering methods182.1Why use an engineering method 182.2Evolutionary model of engineering discipline202.3Overview of technical process models222.3.1Taxonomy of technical process models242.3.2Prototyping252.3.3Incremental method262.3.4Strict contractual approach262.3.5Deciding on process models and methods262.3.6Examples of process models272.3.7Representation of process models272.4Quality criteria of process models293.Current engineering methods for ANNs303.1Why a special method for ANNs 303.1.1Are conventional engineering methodologies suitable for ANNs 303.2Methods for expert systems313.3System identication methods353.4Bailey and Thompson373.4.1Criticism433.5Medsker and Liebowitz443.6Jones and Franklin453.7Schalko473.8Karayiannis and Nicolaos483.8.1Criticism493.9Nelson and Illingworth503.9.1Criticism513.10Whittington and Spracklen523.10.1Criticism563.11Lawrence and Andriola573.11.1Criticism583.12General criticism of current methodologies584.Proposed design and development method604.1Development process614.1.1Requirement analysis654.1.2Specication684.1.3Data and domain analysis704.1.4Architectural design764.1.5Detailed ANN design844.1.6ANN implementation924.1.7Training934.1.8Monitoring training944.1.9ANN quality [¿]Diplomica Verlag, Hermannstal 119k, 22119 Hamburg 144 pp. Englisch. Nº de ref. del artículo: 9783838620213
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 144. Nº de ref. del artículo: 26127725994
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 144 424:B&W 5.83 x 8.27 in or 210 x 148 mm (A5) Perfect Bound on Creme w/Matte Lam. Nº de ref. del artículo: 132861557
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 144. Nº de ref. del artículo: 18127725984
Cantidad disponible: 4 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. A Design and Development Method for Artificial Neural Network Projects | Stefan Vogt | Taschenbuch | 144 S. | Englisch | 2000 | [.] | EAN 9783838620213 | Verantwortliche Person für die EU: Dryas Verlag, ein Imprint der Bedey und Thoms Media GmbH, Hermannstal 119k, 22119 Hamburg, kontakt[at]dryas[dot]de | Anbieter: preigu. Nº de ref. del artículo: 105461933
Cantidad disponible: 5 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783838620213_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783838620213
Cantidad disponible: Más de 20 disponibles