Multiwavelets are wavelets with multiplicity r, that is r scaling functions and r wavelets, which define multiresolution analysis similar to scalar wavelets. They are advantageous over scalar wavelets since they simultaneously posse symmetry and orthogonality. In this work, a new method for constructing multiwavelets with any approximation order is presented. The method involves the derivation of a matrix equation for the desired approximation order. The condition for approximation order is similar to the conditions in the scalar case. Generalized left eigenvectors give the combinations of scaling functions required to reconstruct the desired spline or super function. The method is demonstrated by constructing a specific class of symmetric and non-symmetric multiwavelets with different approximation orders, which include Geranimo-Hardin-Massopust (GHM), Daubechies and Alperts like multi-wavelets, as parameterized solutions. All multi-wavelets constructed in this work, posses the good properties of orthogonality, approximation order and short support.
"Sinopsis" puede pertenecer a otra edición de este libro.
Multiwavelets are wavelets with multiplicity r, that is r scaling functions and r wavelets, which define multiresolution analysis similar to scalar wavelets. They are advantageous over scalar wavelets since they simultaneously posse symmetry and orthogonality. In this work, a new method for constructing multiwavelets with any approximation order is presented. The method involves the derivation of a matrix equation for the desired approximation order. The condition for approximation order is similar to the conditions in the scalar case. Generalized left eigenvectors give the combinations of scaling functions required to reconstruct the desired spline or super function. The method is demonstrated by constructing a specific class of symmetric and non-symmetric multiwavelets with different approximation orders, which include Geranimo-Hardin-Massopust (GHM), Daubechies and Alperts like multi-wavelets, as parameterized solutions. All multi-wavelets constructed in this work, posses the good properties of orthogonality, approximation order and short support.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Multiwavelets are wavelets with multiplicity r, that is r scaling functions and r wavelets, which define multiresolution analysis similar to scalar wavelets. They are advantageous over scalar wavelets since they simultaneously posse symmetry and orthogonality. In this work, a new method for constructing multiwavelets with any approximation order is presented. The method involves the derivation of a matrix equation for the desired approximation order. The condition for approximation order is similar to the conditions in the scalar case. Generalized left eigenvectors give the combinations of scaling functions required to reconstruct the desired spline or super function. The method is demonstrated by constructing a specific class of symmetric and non-symmetric multiwavelets with different approximation orders, which include Geranimo-Hardin-Massopust (GHM), Daubechies and Alperts like multi-wavelets, as parameterized solutions. All multi-wavelets constructed in this work, posses the good properties of orthogonality, approximation order and short support. 108 pp. Englisch. Nº de ref. del artículo: 9783838348322
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Bhatti Dr AsimDr. Bhatti is affiliated with Center for Intelligent Systems Research, Deakin University, Australia. He s been actively involved in R&D activities in the areas of Computer Vision, Image/Signal processing, Virtual/A. Nº de ref. del artículo: 5415262
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Multiwavelets are wavelets with multiplicity r, that is r scaling functions and r wavelets, which define multiresolution analysis similar to scalar wavelets. They are advantageous over scalar wavelets since they simultaneously posse symmetry and orthogonality. In this work, a new method for constructing multiwavelets with any approximation order is presented. The method involves the derivation of a matrix equation for the desired approximation order. The condition for approximation order is similar to the conditions in the scalar case. Generalized left eigenvectors give the combinations of scaling functions required to reconstruct the desired spline or super function. The method is demonstrated by constructing a specific class of symmetric and non-symmetric multiwavelets with different approximation orders, which include Geranimo-Hardin-Massopust (GHM), Daubechies and Alperts like multi-wavelets, as parameterized solutions. All multi-wavelets constructed in this work, posses the good properties of orthogonality, approximation order and short support. Nº de ref. del artículo: 9783838348322
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Multiwavelets are wavelets with multiplicity r, that is r scaling functions and r wavelets, which define multiresolution analysis similar to scalar wavelets. They are advantageous over scalar wavelets since they simultaneously posse symmetry and orthogonality. In this work, a new method for constructing multiwavelets with any approximation order is presented. The method involves the derivation of a matrix equation for the desired approximation order. The condition for approximation order is similar to the conditions in the scalar case. Generalized left eigenvectors give the combinations of scaling functions required to reconstruct the desired spline or super function. The method is demonstrated by constructing a specific class of symmetric and non-symmetric multiwavelets with different approximation orders, which include Geranimo-Hardin-Massopust (GHM), Daubechies and Alperts like multi-wavelets, as parameterized solutions. All multi-wavelets constructed in this work, posses the good properties of orthogonality, approximation order and short support.Books on Demand GmbH, Überseering 33, 22297 Hamburg 108 pp. Englisch. Nº de ref. del artículo: 9783838348322
Cantidad disponible: 2 disponibles