A Bose-Einstein condensate (BEC) interferometer on an atom chip is capable of making an absolute force measurement. The author demonstrates this by making an absolute measurement of the gravitational acceleration g. Two interferometer arms are implemented by splitting a BEC into two symmetric wells using radio-frequency (rf) adiabatic potentials. The independent control of the rf currents running through the chip surface allows to change the polarisation of the rf field and hence the orientation of the double well potential. Tilting of the system with respect to the horizontal introduces an energy difference and the relative phase between the BECs starts to evolve. After moving the atoms back to their initial position and overlapping the clouds in free fall the resulting phase exhibits in the interference pattern. In order to derive a number for g from experimental results a detailed analysis and understanding of the interferometer scheme is essential.
"Sinopsis" puede pertenecer a otra edición de este libro.
A Bose-Einstein condensate (BEC) interferometer on an atom chip is capable of making an absolute force measurement. The author demonstrates this by making an absolute measurement of the gravitational acceleration g. Two interferometer arms are implemented by splitting a BEC into two symmetric wells using radio-frequency (rf) adiabatic potentials. The independent control of the rf currents running through the chip surface allows to change the polarisation of the rf field and hence the orientation of the double well potential. Tilting of the system with respect to the horizontal introduces an energy difference and the relative phase between the BECs starts to evolve. After moving the atoms back to their initial position and overlapping the clouds in free fall the resulting phase exhibits in the interference pattern. In order to derive a number for g from experimental results a detailed analysis and understanding of the interferometer scheme is essential.
was born in Mühlacker, Germany, in 1980. He studied physics at the universities of Heidelberg and Vienna. He finished his PhD at Imperial College London in 2010 where he focused on the physics of cold atoms. Since 2011 he has been working on the development of automotive radar sensors at Mercedes-Benz Cars.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 23,00 gastos de envío desde Alemania a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A Bose-Einstein condensate (BEC) interferometer on an atom chip is capable of making an absolute force measurement. The author demonstrates this by making an absolute measurement of the gravitational acceleration g. Two interferometer arms are implemented by splitting a BEC into two symmetric wells using radio-frequency (rf) adiabatic potentials. The independent control of the rf currents running through the chip surface allows to change the polarisation of the rf field and hence the orientation of the double well potential. Tilting of the system with respect to the horizontal introduces an energy difference and the relative phase between the BECs starts to evolve. After moving the atoms back to their initial position and overlapping the clouds in free fall the resulting phase exhibits in the interference pattern. In order to derive a number for g from experimental results a detailed analysis and understanding of the interferometer scheme is essential. 132 pp. Englisch. Nº de ref. del artículo: 9783838131900
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Baumgaertner Florianwas born in Muehlacker, Germany, in 1980. He studied physics at the universities of Heidelberg and Vienna. He finished his PhD at Imperial College London in 2010 where he focused on the physics of cold atoms. Since . Nº de ref. del artículo: 5407474
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -A Bose-Einstein condensate (BEC) interferometer on an atom chip is capable of making an absolute force measurement. The author demonstrates this by making an absolute measurement of the gravitational acceleration g. Two interferometer arms are implemented by splitting a BEC into two symmetric wells using radio-frequency (rf) adiabatic potentials. The independent control of the rf currents running through the chip surface allows to change the polarization of the field and hence the orientation of the double well potential. Tilting of the system with respect to the horizontal introduces an energy difference and the relative phase between the BECs starts to evolve. After moving the atoms back to their initial position and overlapping the clouds in free fall the resulting phase exhibits in the interference pattern. In order to derive a number for g from experimental results a detailed analysis and understanding of the interferometer scheme is essential.Books on Demand GmbH, Überseering 33, 22297 Hamburg 132 pp. Englisch. Nº de ref. del artículo: 9783838131900
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - A Bose-Einstein condensate (BEC) interferometer on an atom chip is capable of making an absolute force measurement. The author demonstrates this by making an absolute measurement of the gravitational acceleration g. Two interferometer arms are implemented by splitting a BEC into two symmetric wells using radio-frequency (rf) adiabatic potentials. The independent control of the rf currents running through the chip surface allows to change the polarization of the field and hence the orientation of the double well potential. Tilting of the system with respect to the horizontal introduces an energy difference and the relative phase between the BECs starts to evolve. After moving the atoms back to their initial position and overlapping the clouds in free fall the resulting phase exhibits in the interference pattern. In order to derive a number for g from experimental results a detailed analysis and understanding of the interferometer scheme is essential. Nº de ref. del artículo: 9783838131900
Cantidad disponible: 1 disponibles