World-wide trends such as globalization, demographic shifts, increased customer demands, and shorter product lifecycles present a significant challenge to the road freight transport industry: meeting the growing road freight transport demand economically while striving for sustainability. Artificial intelligence, particularly machine learning, is expected to empower transport planners to incorporate more information and react quicker to the fast-changing decision environment. Hence, using machine learning can lead to more efficient and effective transport planning. However, despite the promising prospects of machine learning in road freight transport planning, both academia and industry struggle to identify and implement suitable use cases to gain a competitive edge. In her dissertation, Sandra Lechtenberg explores how machine learning can enhance decision-making in operational and real-time road freight transport planning. She outlines an implementation guideline, which involves identifying decision tasks in planning processes, assessing their suitability for machine learning, and proposing steps to follow when implementing respective algorithms.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 2,00 gastos de envío desde Irlanda a España
Destinos, gastos y plazos de envíoLibrería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Nº de ref. del artículo: V9783832556303
Cantidad disponible: 2 disponibles
Librería: ISD LLC, Bristol, CT, Estados Unidos de America
paperback. Condición: New. Nº de ref. del artículo: 1829191
Cantidad disponible: 5 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: V9783832556303
Cantidad disponible: 2 disponibles