The holomorphic functional calculus for sectorial unbounded operators is an extension of the classical Dunford calculus for bounded operators. The interest in this calculus is motivated by the Kato square root problem and applications to the operator-sum method introduced by DaPrato and Grisvard to treat evolution equations on a finite interval. In this thesis we develop the holomorphic functional calculus for multisectorial and asymptotically bisectorial operators. We obtain versions of closed-sum theorems that allow to deduce maximal regularity for first and second order Cauchy problems both on the line and for the periodic problem. The results are then applied to prove existence and uniqueness of non-linear evolution equations.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 2,24 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoGRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: ISD LLC, Bristol, CT, Estados Unidos de America
paperback. Condición: New. Nº de ref. del artículo: 367481
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 45908102-n
Cantidad disponible: 2 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. The holomorphic functional calculus for sectorial unbounded operators is an extension of the classical Dunford calculus for bounded operators. The interest in this calculus is motivated by the Kato square root problem and applications to the operator-sum method introduced by DaPrato and Grisvard to treat evolution equations on a finite interval. In this thesis we develop the holomorphic functional calculus for multisectorial and asymptotically bisectorial operators. We obtain versions of closed-sum theorems that allow to deduce maximal regularity for first and second order Cauchy problems both on the line and for the periodic problem. The results are then applied to prove existence and uniqueness of non-linear evolution equations. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783832508623
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45908102
Cantidad disponible: 2 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2005. 1st Edition. paperback. . . . . . Nº de ref. del artículo: V9783832508623
Cantidad disponible: 2 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. 2005. 1st Edition. paperback. . . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9783832508623
Cantidad disponible: 2 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condición: new. Paperback. The holomorphic functional calculus for sectorial unbounded operators is an extension of the classical Dunford calculus for bounded operators. The interest in this calculus is motivated by the Kato square root problem and applications to the operator-sum method introduced by DaPrato and Grisvard to treat evolution equations on a finite interval. In this thesis we develop the holomorphic functional calculus for multisectorial and asymptotically bisectorial operators. We obtain versions of closed-sum theorems that allow to deduce maximal regularity for first and second order Cauchy problems both on the line and for the periodic problem. The results are then applied to prove existence and uniqueness of non-linear evolution equations. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9783832508623
Cantidad disponible: 1 disponibles