rungs problem en in unterschiedlichen wissenschaftlichen Disziplinen anwen deten [Gold89. 1, S. 126-130]. Das Optimierungsproblem in seiner allgemeinsten Form ist die Aufgabe Optimiere -+ f (x) , XEM, (10) n n mit f als reellwertiger Funktion des lR und M C lR als Raum aller zulassigen Lasungen. Die Optimierung beliebiger reeller Funktionen unter Verwendung Genetischer Algorithmen wurde zuerst in der Dissertation von de Jong [Jong75] behandelt. Die von ihm experimentell untersuchten unste tigen, nichtkonvexen, multimodalen und stochastischen Funktionen dienen in der Literatur seither als Standardprobleme zur Validierung genetischer Optimierungsstrategien, siehe etwa [MSB91]. Wird in der Formulierung der Aufgabe (10) zusatzlich die Ganzzahligkeitsbedingung an die Kompo nenten der Lasungsvektoren x gekntipft, so fallt das Problem bekanntlich in den Bereich der kombinatorischen Optimierung. An einem einfachen Beispiel soll das konstruktive Paradigma der genetischen Optimierung ein gefiihrt werden. Hierzu werden wir eine der Biologie entlehnte begrifHiche Analogie verwenden, die in Abschnitt 3. 2 zusammenhangend dargestellt wird. Es sei die Aufgabe 2 Max -+ f(x,y)=x -2xy+y2, O:::;x,y:::;k-lmitx,yElN (11) 2 mit k als Zweierpotenz, also z. B. k = 32, gegeben. Jedes der 32 unter schiedlichen 2-Tupel, welche als potentielle Optimallasungen der Aufgabe zur Diskussion stehen, bezeichnet den Phanotyp einer zulassigen Lasung. Dieser laBt sich tiber eine Binartransformation in zwei Strings der Lange log2 k darstellen. x) = ( 25 ) 11 1 0 0 1 I (12) ( y 14 -+ 0 1 1 1 0 Die geordnete Menge binarer Strings definiert den Genotypus einer Lasung.
"Sinopsis" puede pertenecer a otra edición de este libro.
rungs problem en in unterschiedlichen wissenschaftlichen Disziplinen anwen deten [Gold89. 1, S. 126-130]. Das Optimierungsproblem in seiner allgemeinsten Form ist die Aufgabe Optimiere -+ f (x) , XEM, (10) n n mit f als reellwertiger Funktion des lR und M C lR als Raum aller zulassigen Lasungen. Die Optimierung beliebiger reeller Funktionen unter Verwendung Genetischer Algorithmen wurde zuerst in der Dissertation von de Jong [Jong75] behandelt. Die von ihm experimentell untersuchten unste tigen, nichtkonvexen, multimodalen und stochastischen Funktionen dienen in der Literatur seither als Standardprobleme zur Validierung genetischer Optimierungsstrategien, siehe etwa [MSB91]. Wird in der Formulierung der Aufgabe (10) zusatzlich die Ganzzahligkeitsbedingung an die Kompo nenten der Lasungsvektoren x gekntipft, so fallt das Problem bekanntlich in den Bereich der kombinatorischen Optimierung. An einem einfachen Beispiel soll das konstruktive Paradigma der genetischen Optimierung ein gefiihrt werden. Hierzu werden wir eine der Biologie entlehnte begrifHiche Analogie verwenden, die in Abschnitt 3. 2 zusammenhangend dargestellt wird. Es sei die Aufgabe 2 Max -+ f(x,y)=x -2xy+y2, O:::;x,y:::;k-lmitx,yElN (11) 2 mit k als Zweierpotenz, also z. B. k = 32, gegeben. Jedes der 32 unter schiedlichen 2-Tupel, welche als potentielle Optimallasungen der Aufgabe zur Diskussion stehen, bezeichnet den Phanotyp einer zulassigen Lasung. Dieser laBt sich tiber eine Binartransformation in zwei Strings der Lange log2 k darstellen. x) = ( 25 ) 11 1 0 0 1 I (12) ( y 14 -+ 0 1 1 1 0 Die geordnete Menge binarer Strings definiert den Genotypus einer Lasung.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Alemania
Broschiert. Condición: Gut. XIV, 233 Seiten; Das hier angebotene Buch stammt aus einer teilaufgelösten wissenschaftlichen Bibliothek und trägt die entsprechenden Kennzeichnungen (Rückenschild, Instituts-Stempel.); Schnitt und Einband sind etwas staubschmutzig; der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. Sprache: Deutsch Gewicht in Gramm: 300. Nº de ref. del artículo: 1556816
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0316110065149
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783824420513_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783824420513
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -rungs problem en in unterschiedlichen wissenschaftlichen Disziplinen anwen deten [Gold89. 1, S. 126-130]. Das Optimierungsproblem in seiner allgemeinsten Form ist die Aufgabe Optimiere -+ f (x) , XEM, (10) n n mit f als reellwertiger Funktion des lR und M C lR als Raum aller zulassigen Lasungen. Die Optimierung beliebiger reeller Funktionen unter Verwendung Genetischer Algorithmen wurde zuerst in der Dissertation von de Jong [Jong75] behandelt. Die von ihm experimentell untersuchten unste tigen, nichtkonvexen, multimodalen und stochastischen Funktionen dienen in der Literatur seither als Standardprobleme zur Validierung genetischer Optimierungsstrategien, siehe etwa [MSB91]. Wird in der Formulierung der Aufgabe (10) zusatzlich die Ganzzahligkeitsbedingung an die Kompo nenten der Lasungsvektoren x gekntipft, so fallt das Problem bekanntlich in den Bereich der kombinatorischen Optimierung. An einem einfachen Beispiel soll das konstruktive Paradigma der genetischen Optimierung ein gefiihrt werden. Hierzu werden wir eine der Biologie entlehnte begrifHiche Analogie verwenden, die in Abschnitt 3. 2 zusammenhangend dargestellt wird. Es sei die Aufgabe 2 Max -+ f(x,y)=x -2xy+y2, O:::;x,y:::;k-lmitx,yElN (11) 2 mit k als Zweierpotenz, also z. B. k = 32, gegeben. Jedes der 32 unter schiedlichen 2-Tupel, welche als potentielle Optimallasungen der Aufgabe zur Diskussion stehen, bezeichnet den Phanotyp einer zulassigen Lasung. Dieser laBt sich tiber eine Binartransformation in zwei Strings der Lange log2 k darstellen. x) = ( 25 ) 11 1 0 0 1 I (12) ( y 14 -+ 0 1 1 1 0 Die geordnete Menge binarer Strings definiert den Genotypus einer Lasung. 252 pp. Deutsch. Nº de ref. del artículo: 9783824420513
Cantidad disponible: 2 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 233 pages. German language. 8.27x5.83x0.57 inches. In Stock. Nº de ref. del artículo: x-3824420511
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1 Motivation.- 2 Flowshop Scheduling.- 2.1 Das deterministische Job Scheduling Modell.- 2.1.1 Planvorgaben und implizite Annahmen.- 2.1.2 Durchlaufzeitbezogene Optimierungsziele.- 2.1.3 Problemklassifikation.- 2.2 Optimierung von Flowshop Problemen.- 2.2.1 . Nº de ref. del artículo: 5336918
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -rungs problem en in unterschiedlichen wissenschaftlichen Disziplinen anwen deten [Gold89. 1, S. 126-130]. Das Optimierungsproblem in seiner allgemeinsten Form ist die Aufgabe Optimiere -+ f (x) , XEM, (10) n n mit f als reellwertiger Funktion des lR und M C lR als Raum aller zulassigen Lasungen. Die Optimierung beliebiger reeller Funktionen unter Verwendung Genetischer Algorithmen wurde zuerst in der Dissertation von de Jong [Jong75] behandelt. Die von ihm experimentell untersuchten unste tigen, nichtkonvexen, multimodalen und stochastischen Funktionen dienen in der Literatur seither als Standardprobleme zur Validierung genetischer Optimierungsstrategien, siehe etwa [MSB91]. Wird in der Formulierung der Aufgabe (10) zusatzlich die Ganzzahligkeitsbedingung an die Kompo nenten der Lasungsvektoren x gekntipft, so fallt das Problem bekanntlich in den Bereich der kombinatorischen Optimierung. An einem einfachen Beispiel soll das konstruktive Paradigma der genetischen Optimierung ein gefiihrt werden. Hierzu werden wir eine der Biologie entlehnte begrifHiche Analogie verwenden, die in Abschnitt 3. 2 zusammenhangend dargestellt wird. Es sei die Aufgabe 2 Max -+ f(x,y)=x -2xy+y2, O:::;x,y:::;k-lmitx,yElN (11) 2 mit k als Zweierpotenz, also z. B. k = 32, gegeben. Jedes der 32 unter schiedlichen 2-Tupel, welche als potentielle Optimallasungen der Aufgabe zur Diskussion stehen, bezeichnet den Phanotyp einer zulassigen Lasung. Dieser laBt sich tiber eine Binartransformation in zwei Strings der Lange log2 k darstellen. x) = ( 25 ) 11 1 0 0 1 I (12) ( y 14 -+ 0 1 1 1 0 Die geordnete Menge binarer Strings definiert den Genotypus einer Lasung.Deutscher Universitätsverlag in Springer Science + Business , Tiergartenstr. 15-17, 69121 Heidelberg 252 pp. Deutsch. Nº de ref. del artículo: 9783824420513
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - rungs problem en in unterschiedlichen wissenschaftlichen Disziplinen anwen deten [Gold89. 1, S. 126-130]. Das Optimierungsproblem in seiner allgemeinsten Form ist die Aufgabe Optimiere -+ f (x) , XEM, (10) n n mit f als reellwertiger Funktion des lR und M C lR als Raum aller zulassigen Lasungen. Die Optimierung beliebiger reeller Funktionen unter Verwendung Genetischer Algorithmen wurde zuerst in der Dissertation von de Jong [Jong75] behandelt. Die von ihm experimentell untersuchten unste tigen, nichtkonvexen, multimodalen und stochastischen Funktionen dienen in der Literatur seither als Standardprobleme zur Validierung genetischer Optimierungsstrategien, siehe etwa [MSB91]. Wird in der Formulierung der Aufgabe (10) zusatzlich die Ganzzahligkeitsbedingung an die Kompo nenten der Lasungsvektoren x gekntipft, so fallt das Problem bekanntlich in den Bereich der kombinatorischen Optimierung. An einem einfachen Beispiel soll das konstruktive Paradigma der genetischen Optimierung ein gefiihrt werden. Hierzu werden wir eine der Biologie entlehnte begrifHiche Analogie verwenden, die in Abschnitt 3. 2 zusammenhangend dargestellt wird. Es sei die Aufgabe 2 Max -+ f(x,y)=x -2xy+y2, O:::;x,y:::;k-lmitx,yElN (11) 2 mit k als Zweierpotenz, also z. B. k = 32, gegeben. Jedes der 32 unter schiedlichen 2-Tupel, welche als potentielle Optimallasungen der Aufgabe zur Diskussion stehen, bezeichnet den Phanotyp einer zulassigen Lasung. Dieser laBt sich tiber eine Binartransformation in zwei Strings der Lange log2 k darstellen. x) = ( 25 ) 11 1 0 0 1 I (12) ( y 14 -+ 0 1 1 1 0 Die geordnete Menge binarer Strings definiert den Genotypus einer Lasung. Nº de ref. del artículo: 9783824420513
Cantidad disponible: 1 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Flowhop Scheduling mit parallelen Genetischen Algorithmen | Eine problemorientierte Analyse genetischer Suchstrategien | Christian Bierwirth | Taschenbuch | 233 S. | Deutsch | 1993 | Deutscher Universitätsverlag | EAN 9783824420513 | Verantwortliche Person für die EU: Deutscher Universitätsverlag in Springer Science + Business, Tiergartenstr. 15-17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 102110085
Cantidad disponible: 5 disponibles