When we learn from books or daily experience, we make associations and draw inferences on the basis of information that is insufficient for under standing. One example of insufficient information may be a small sample derived from observing experiments. With this perspective, the need for de veloping a better understanding of the behavior of a small sample presents a problem that is far beyond purely academic importance. During the past 15 years considerable progress has been achieved in the study of this issue in China. One distinguished result is the principle of in formation diffusion. According to this principle, it is possible to partly fill gaps caused by incomplete information by changing crisp observations into fuzzy sets so that one can improve the recognition of relationships between input and output. The principle of information diffusion has been proven suc cessful for the estimation of a probability density function. Many successful applications reflect the advantages of this new approach. It also supports an argument that fuzzy set theory can be used not only in "soft" science where some subjective adjustment is necessary, but also in "hard" science where all data are recorded.
"Sinopsis" puede pertenecer a otra edición de este libro.
When we learn from books or daily experience, we make associations and draw inferences on the basis of information that is insufficient for under standing. One example of insufficient information may be a small sample derived from observing experiments. With this perspective, the need for de veloping a better understanding of the behavior of a small sample presents a problem that is far beyond purely academic importance. During the past 15 years considerable progress has been achieved in the study of this issue in China. One distinguished result is the principle of in formation diffusion. According to this principle, it is possible to partly fill gaps caused by incomplete information by changing crisp observations into fuzzy sets so that one can improve the recognition of relationships between input and output. The principle of information diffusion has been proven suc cessful for the estimation of a probability density function. Many successful applications reflect the advantages of this new approach. It also supports an argument that fuzzy set theory can be used not only in "soft" science where some subjective adjustment is necessary, but also in "hard" science where all data are recorded.
The need for developing a better understanding of the behaviour of small samples by observing experiments presents a problem far beyond purely academic interest. This monograph describes the character of incomplete fuzzy information, and proposes and proves the principle of information diffusion. The focus lies in changing a traditional sample-point into a fuzzy set to partly fill the gap caused by incomplete data, so that the recognition of relationships between input and output can be improved. Part 1 examines the origins of the principle of information diffusion and describes the mathematical concepts and proofs. Topics covered include: information matrix, demonstration of information distribution, and the kernel function in terms of information diffusion. Part 2 covers applications such as earthquake engineering and risk assessment of flood, and demonstrates that the new theory is useful for studying practical cases.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,81 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Book on fuzzy concepts to explain the dynamics and limitation of kernel functionsGives diffusion models for practical problemsWhen we learn from books or daily experience, we make associations and draw inferences on the basis of information that is . Nº de ref. del artículo: 5310777
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -When we learn from books or daily experience, we make associations and draw inferences on the basis of information that is insufficient for under standing. One example of insufficient information may be a small sample derived from observing experiments. With this perspective, the need for de veloping a better understanding of the behavior of a small sample presents a problem that is far beyond purely academic importance. During the past 15 years considerable progress has been achieved in the study of this issue in China. One distinguished result is the principle of in formation diffusion. According to this principle, it is possible to partly fill gaps caused by incomplete information by changing crisp observations into fuzzy sets so that one can improve the recognition of relationships between input and output. The principle of information diffusion has been proven suc cessful for the estimation of a probability density function. Many successful applications reflect the advantages of this new approach. It also supports an argument that fuzzy set theory can be used not only in 'soft' science where some subjective adjustment is necessary, but also in 'hard' science where all data are recorded. 396 pp. Englisch. Nº de ref. del artículo: 9783790825114
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - When we learn from books or daily experience, we make associations and draw inferences on the basis of information that is insufficient for under standing. One example of insufficient information may be a small sample derived from observing experiments. With this perspective, the need for de veloping a better understanding of the behavior of a small sample presents a problem that is far beyond purely academic importance. During the past 15 years considerable progress has been achieved in the study of this issue in China. One distinguished result is the principle of in formation diffusion. According to this principle, it is possible to partly fill gaps caused by incomplete information by changing crisp observations into fuzzy sets so that one can improve the recognition of relationships between input and output. The principle of information diffusion has been proven suc cessful for the estimation of a probability density function. Many successful applications reflect the advantages of this new approach. It also supports an argument that fuzzy set theory can be used not only in 'soft' science where some subjective adjustment is necessary, but also in 'hard' science where all data are recorded. Nº de ref. del artículo: 9783790825114
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783790825114_new
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -When we learn from books or daily experience, we make associations and draw inferences on the basis of information that is insufficient for under standing. One example of insufficient information may be a small sample derived from observing experiments. With this perspective, the need for de veloping a better understanding of the behavior of a small sample presents a problem that is far beyond purely academic importance. During the past 15 years considerable progress has been achieved in the study of this issue in China. One distinguished result is the principle of in formation diffusion. According to this principle, it is possible to partly fill gaps caused by incomplete information by changing crisp observations into fuzzy sets so that one can improve the recognition of relationships between input and output. The principle of information diffusion has been proven suc cessful for the estimation of a probability density function. Many successful applications reflect the advantages of this new approach. It also supports an argument that fuzzy set theory can be used not only in 'soft' science where some subjective adjustment is necessary, but also in 'hard' science where all data are recorded.Physica Verlag, Tiergartenstr. 17, 69121 Heidelberg 396 pp. Englisch. Nº de ref. del artículo: 9783790825114
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 394. Nº de ref. del artículo: 262157978
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 394 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5722693
Cantidad disponible: 4 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0316110061562
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 394. Nº de ref. del artículo: 182157968
Cantidad disponible: 4 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA79037908251156
Cantidad disponible: 1 disponibles