Fuzzy rule systems have found a wide range of applications in many fields of science and technology. Traditionally, fuzzy rules are generated from human expert knowledge or human heuristics for relatively simple systems. In the last few years, data-driven fuzzy rule generation has been very active. Compared to heuristic fuzzy rules, fuzzy rules generated from data are able to extract more profound knowledge for more complex systems. This book presents a number of approaches to the generation of fuzzy rules from data, ranging from the direct fuzzy inference based to neural net works and evolutionary algorithms based fuzzy rule generation. Besides the approximation accuracy, special attention has been paid to the interpretabil ity of the extracted fuzzy rules. In other words, the fuzzy rules generated from data are supposed to be as comprehensible to human beings as those generated from human heuristics. To this end, many aspects of interpretabil ity of fuzzy systems have been discussed, which must be taken into account in the data-driven fuzzy rule generation. In this way, fuzzy rules generated from data are intelligible to human users and therefore, knowledge about unknown systems can be extracted.
"Sinopsis" puede pertenecer a otra edición de este libro.
Fuzzy rule systems have found a wide range of applications in many fields of science and technology. Traditionally, fuzzy rules are generated from human expert knowledge or human heuristics for relatively simple systems. In the last few years, data-driven fuzzy rule generation has been very active. Compared to heuristic fuzzy rules, fuzzy rules generated from data are able to extract more profound knowledge for more complex systems. This book presents a number of approaches to the generation of fuzzy rules from data, ranging from the direct fuzzy inference based to neural net works and evolutionary algorithms based fuzzy rule generation. Besides the approximation accuracy, special attention has been paid to the interpretabil ity of the extracted fuzzy rules. In other words, the fuzzy rules generated from data are supposed to be as comprehensible to human beings as those generated from human heuristics. To this end, many aspects of interpretabil ity of fuzzy systems have been discussed, which must be taken into account in the data-driven fuzzy rule generation. In this way, fuzzy rules generated from data are intelligible to human users and therefore, knowledge about unknown systems can be extracted.
This book presents a variety of recently developed methods for generating fuzzy rules from data with the help of neural networks and evolutionary algorithms. Special efforts have been put on dealing with knowledge incorporation into neural and evolutionary systems and knowledge extraction from data with the help of fuzzy logic. On the one hand, knowledge that is understandable to human beings can be extracted from data using evolutionary and learning methods by maintaining the interpretability of the generated fuzzy rules. On the other hand, a priori knowledge like expert knowledge and human preferences can be incorporated into evolution and learning, taking advantage of the knowledge representation capability of fuzzy rule systems and fuzzy preference models. Several engineering application examples in the fields of intelligent vehicle systems, process modeling and control and robotics are presented.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 21,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: CSG Onlinebuch GMBH, Darmstadt, Alemania
Gebunden. Condición: Sehr gut. Gebraucht - Sehr gut Zustand: Sehr gut, X, 271 p. 180 illus. About this book This book presents a variety of recently developed methods for generating fuzzy rules from data with the help of neural networks and evolutionary algorithms. Special efforts have been put on dealing with knowledge incorporation into neural and evolutionary systems and knowledge extraction from data with the help of fuzzy logic. On the one hand, knowledge that is understandable to human beings can be extracted from data using evolutionary and learning methods by maintaining the interpretability of the generated fuzzy rules. On the other hand, a priori knowledge like expert knowledge and human preferences can be incorporated into evolution and learning, taking advantage of the knowledge representation capability of fuzzy rule systems and fuzzy preference models. Several engineering application examples in the fields of intelligent vehicle systems, process modeling and control and robotics are presented. Written fo scientists. Nº de ref. del artículo: 18297
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Fuzzy rule systems have found a wide range of applications in many fields of science and technology. Traditionally, fuzzy rules are generated from human expert knowledge or human heuristics for relatively simple systems. In the last few years, data-driven fuzzy rule generation has been very active. Compared to heuristic fuzzy rules, fuzzy rules generated from data are able to extract more profound knowledge for more complex systems. This book presents a number of approaches to the generation of fuzzy rules from data, ranging from the direct fuzzy inference based to neural net works and evolutionary algorithms based fuzzy rule generation. Besides the approximation accuracy, special attention has been paid to the interpretabil ity of the extracted fuzzy rules. In other words, the fuzzy rules generated from data are supposed to be as comprehensible to human beings as those generated from human heuristics. To this end, many aspects of interpretabil ity of fuzzy systems have been discussed, which must be taken into account in the data-driven fuzzy rule generation. In this way, fuzzy rules generated from data are intelligible to human users and therefore, knowledge about unknown systems can be extracted. 272 pp. Englisch. Nº de ref. del artículo: 9783790815375
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Fuzzy rule systems have found a wide range of applications in many fields of science and technology. Traditionally, fuzzy rules are generated from human expert knowledge or human heuristics for relatively simple systems. In the last few years, data-driven fuzzy rule generation has been very active. Compared to heuristic fuzzy rules, fuzzy rules generated from data are able to extract more profound knowledge for more complex systems. This book presents a number of approaches to the generation of fuzzy rules from data, ranging from the direct fuzzy inference based to neural net works and evolutionary algorithms based fuzzy rule generation. Besides the approximation accuracy, special attention has been paid to the interpretabil ity of the extracted fuzzy rules. In other words, the fuzzy rules generated from data are supposed to be as comprehensible to human beings as those generated from human heuristics. To this end, many aspects of interpretabil ity of fuzzy systems have been discussed, which must be taken into account in the data-driven fuzzy rule generation. In this way, fuzzy rules generated from data are intelligible to human users and therefore, knowledge about unknown systems can be extracted. Nº de ref. del artículo: 9783790815375
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783790815375_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Fuzzy rule systems have found a wide range of applications in many fields of science and technology. Traditionally, fuzzy rules are generated from human expert knowledge or human heuristics for relatively simple systems. In the last few years, data-driven f. Nº de ref. del artículo: 5310475
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -Fuzzy rule systems have found a wide range of applications in many fields of science and technology. Traditionally, fuzzy rules are generated from human expert knowledge or human heuristics for relatively simple systems. In the last few years, data-driven fuzzy rule generation has been very active. Compared to heuristic fuzzy rules, fuzzy rules generated from data are able to extract more profound knowledge for more complex systems. This book presents a number of approaches to the generation of fuzzy rules from data, ranging from the direct fuzzy inference based to neural net works and evolutionary algorithms based fuzzy rule generation. Besides the approximation accuracy, special attention has been paid to the interpretabil ity of the extracted fuzzy rules. In other words, the fuzzy rules generated from data are supposed to be as comprehensible to human beings as those generated from human heuristics. To this end, many aspects of interpretabil ity of fuzzy systems have been discussed, which must be taken into account in the data-driven fuzzy rule generation. In this way, fuzzy rules generated from data are intelligible to human users and therefore, knowledge about unknown systems can be extracted.Physica Verlag, Tiergartenstr. 17, 69121 Heidelberg 288 pp. Englisch. Nº de ref. del artículo: 9783790815375
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0316110061272
Cantidad disponible: Más de 20 disponibles