Book by Hlein Frederic
"Sinopsis" puede pertenecer a otra edición de este libro.
One of the most striking development of the last decades in the study of minimal surfaces, constant mean surfaces and harmonic maps is the discovery that many classical problems in differential geometry - including these examples - are actually integrable systems. This theory grew up mainly after the important discovery of the properties of the Korteweg-de Vries equation in the sixties. After C. Gardner, J. Greene, M. Kruskal et R. Miura [44] showed that this equation could be solved using the inverse scattering method and P. Lax [62] reinterpreted this method by his famous equation, many other deep observations have been made during the seventies, mainly by the Russian and the Japanese schools. In particular this theory was shown to be strongly connected with methods from algebraic geom etry (S. Novikov, V. B. Matveev, LM. Krichever. . . ), loop techniques (M. Adler, B. Kostant, W. W. Symes, M. J. Ablowitz . . . ) and Grassmannian manifolds in Hilbert spaces (M. Sato . . . ). Approximatively during the same period, the twist or theory of R. Penrose, built independentely, was applied successfully by R. Penrose and R. S. Ward for constructing self-dual Yang-Mills connections and four-dimensional self-dual manifolds using complex geometry methods. Then in the eighties it became clear that all these methods share the same roots and that other instances of integrable systems should exist, in particular in differential ge ometry. This led K.
This book intends to give an introduction to harmonic maps between a surface and a symmetric manifold and constant mean curvature surfaces as completely integrable systems. The presentation is accessible to undergraduate and graduate students in mathematics but will also be useful to researchers. It is among the first textbooks about integrable systems, their interplay with harmonic maps and the use of loop groups, and it presents the theory, for the first time, from the point of view of a differential geometer. The most important results are exposed with complete proofs (except for the last two chapters, which require a minimal knowledge from the reader). Some proofs have been completely rewritten with the objective, in particular, to clarify the relation between finite mean curvature tori, Wente tori and the loop group approach - an aspect largely neglected in the literature. The book helps the reader to access the ideas of the theory and to acquire a unified perspective of the subject.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 5,32 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoGRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Chequamegon Books, Washburn, WI, Estados Unidos de America
Paperback. Condición: Fine. 122 pages. Notes taken by Roger Moser. Lectures in Mathematics series. ; 6 3/4 x 9 1/2 ". Nº de ref. del artículo: 94879
Cantidad disponible: 1 disponibles
Librería: Phatpocket Limited, Waltham Abbey, HERTS, Reino Unido
Condición: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Nº de ref. del artículo: Z1-B-039-01497
Cantidad disponible: 1 disponibles
Librería: Black Gull Books (P.B.F.A.), St Leonard's on Sea, Reino Unido
Paperback. Condición: Very Good. Nº de ref. del artículo: 17-E09956
Cantidad disponible: 1 disponibles
Librería: Plurabelle Books Ltd, Cambridge, Reino Unido
Paperback. Condición: Very Good. Series: Lectures in Mathematics, ETH Zürich. 122p large format paperback, green cover, a fresh and tight copy, no names or stamps, very good indeed Language: English. Nº de ref. del artículo: 232889
Cantidad disponible: 1 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-273249
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0316110058986
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783764365769
Cantidad disponible: Más de 20 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. Aus der Auflösung einer renommierten Bibliothek. Kann Stempel beinhalten. | Seiten: 124 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 384496/202
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783764365769_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -One of the most striking development of the last decades in the study of minimal surfaces, constant mean surfaces and harmonic maps is the discovery that many classical problems in differential geometry - including these examples - are actually integrable systems. This theory grew up mainly after the important discovery of the properties of the Korteweg-de Vries equation in the sixties. After C. Gardner, J. Greene, M. Kruskal et R. Miura [44] showed that this equation could be solved using the inverse scattering method and P. Lax [62] reinterpreted this method by his famous equation, many other deep observations have been made during the seventies, mainly by the Russian and the Japanese schools. In particular this theory was shown to be strongly connected with methods from algebraic geom etry (S. Novikov, V. B. Matveev, LM. Krichever. . . ), loop techniques (M. Adler, B. Kostant, W. W. Symes, M. J. Ablowitz . . . ) and Grassmannian manifolds in Hilbert spaces (M. Sato . . . ). Approximatively during the same period, the twist or theory of R. Penrose, built independentely, was applied successfully by R. Penrose and R. S. Ward for constructing self-dual Yang-Mills connections and four-dimensional self-dual manifolds using complex geometry methods. Then in the eighties it became clear that all these methods share the same roots and that other instances of integrable systems should exist, in particular in differential ge ometry. This led K. 122 pp. Englisch. Nº de ref. del artículo: 9783764365769
Cantidad disponible: 2 disponibles