0 Introduction.- 1 Auxiliary Results.- 2 Maximization of Functionals in H? [a, b] and Perfect ?-Splines.- 3 Fredholm Kernels.- 4 Review of Classical Chebyshev Polynomial Splines.- 5 Additive Kolmogorov-Landau Inequalities.- 6 Proof of the Main Result.- 7 Properties of Chebyshev ?-Splines.- 8 Chebyshev ?-Splines on the Half-line ?+.- 9 Maximization of Integral Functional in H?[a1, a2], -? ? a1 < a2 ? +?.- 10 Sharp Kolmogorov Inequalities in WrH?(?).- 11 Landau and Hadamard Inequalities in WrH?(?+) and WrH?(?).- 12 Sharp Kolmogorov-Landau inequalities in W2H?(?) AND W2H?(?+.- 13 Chebyshev ?-Splines in the Problem of N-Width of the Functional Class WrH?[0, 1].- 14 Function in WrH?[-1, 1] Deviating Most from Polynomials of Degree r.- 15 N-Widths of the Class WrH?[-1, 1].- 16 Lower Bounds for the N-Widths of the Class WrH?[n].- Appendix A Kolmogorov Problem for Functions.- A.3 Sufficient conditions of extremality in the problem (K - L).- A.3.1 Corollaries of differentiation formulas.- A.3.2 Extremality conditions in the form of an operator equation.- A.4.2 Solution of the problem (K).- A.4.3 Problem (K) in the Hölder classes.- B.1 Preliminary remarks.- B.2 Maximization of the norm.- B.2.1 Differentiation formulae and inequalities.- B.3 Maximization of the norm.- B.4 Maximization of the norm.- B.5 Maximization of the norm.
"Sinopsis" puede pertenecer a otra edición de este libro.
This monograph describes advances in the theory of extremal problems in classes of functions defined by a majorizing modulus of continuity w. In particular, an extensive account is given of structural, limiting, and extremal properties of perfect w-splines generalizing standard polynomial perfect splines in the theory of Sobolev classes. In this context special attention is paid to the qualitative description of Chebyshev w-splines and w-polynomials associated with the Kolmogorov problem of n-widths and sharp additive inequalities between the norms of intermediate derivatives in functional classes with a bounding modulus of continuity. Since, as a rule, the techniques of the theory of Sobolev classes are inapplicable in such classes, novel geometrical methods are developed based on entirely new ideas. The book can be used profitably by pure or applied scientists looking for mathematical approaches to the solution of practical problems for which standard methods do not work. The scope of problems treated in the monograph, ranging from the maximization of integral functionals, characterization of the structure of equimeasurable functions, construction of Chebyshev splines through applications of fixed point theorems to the solution of integral equations related to the classical Euler equation, appeals to mathematicians specializing in approximation theory, functional and convex analysis, optimization, topology, and integral equations .
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 14,90 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 224 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 107820/202
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph describes advances in the theory of extremal problems in classes of functions defined by a majorizing modulus of continuity w. In particular, an extensive account is given of structural, limiting, and extremal properties of perfect w-splines generalizing standard polynomial perfect splines in the theory of Sobolev classes. In this context special attention is paid to the qualitative description of Chebyshev w-splines and w-polynomials associated with the Kolmogorov problem of n-widths and sharp additive inequalities between the norms of intermediate derivatives in functional classes with a bounding modulus of continuity. Since, as a rule, the techniques of the theory of Sobolev classes are inapplicable in such classes, novel geometrical methods are developed based on entirely new ideas. The book can be used profitably by pure or applied scientists looking for mathematical approaches to the solution of practical problems for which standard methods do not work. The scope of problems treated in the monograph, ranging from the maximization of integral functionals, characterization of the structure of equimeasurable functions, construction of Chebyshev splines through applications of fixed point theorems to the solution of integral equations related to the classical Euler equation, appeals to mathematicians specializing in approximation theory, functional and convex analysis, optimization, topology, and integral equations. 210 pp. Englisch. Nº de ref. del artículo: 9783764359843
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783764359843_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph describes advances in the theory of extremal problems in classes of functions defined by a majorizing modulus of continuity w. In particular, an extensive account is given of structural, limiting, and extremal properties of perfect w-splines generalizing standard polynomial perfect splines in the theory of Sobolev classes. In this context special attention is paid to the qualitative description of Chebyshev w-splines and w-polynomials associated with the Kolmogorov problem of n-widths and sharp additive inequalities between the norms of intermediate derivatives in functional classes with a bounding modulus of continuity. Since, as a rule, the techniques of the theory of Sobolev classes are inapplicable in such classes, novel geometrical methods are developed based on entirely new ideas. The book can be used profitably by pure or applied scientists looking for mathematical approaches to the solution of practical problems for which standard methods do not work. The scope of problems treated in the monograph, ranging from the maximization of integral functionals, characterization of the structure of equimeasurable functions, construction of Chebyshev splines through applications of fixed point theorems to the solution of integral equations related to the classical Euler equation, appeals to mathematicians specializing in approximation theory, functional and convex analysis, optimization, topology, and integral equations. Nº de ref. del artículo: 9783764359843
Cantidad disponible: 2 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783764359843
Cantidad disponible: 2 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783764359843
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. This monograph describes advances in the theory of extremal problems in classes of functions defined by a majorizing modulus of continuity w. In particular, an extensive account is given of structural, limiting, and extremal properties of perfect w-splines . Nº de ref. del artículo: 908772803
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 205 pages. 9.00x6.75x0.50 inches. In Stock. Nº de ref. del artículo: x-3764359846
Cantidad disponible: 2 disponibles