This book deals with asymptotic solutions of linear and nonlinear equa tions which decay as h ---+ 0 outside a neighborhood of certain points, curves and surfaces. Such solutions are almost everywhere well approximated by the functions cp(x) exp{iS(x)/h}, x E 1R3, where S(x) is complex, and ImS(x) ~ o. When the phase S(x) is real (ImS(x) = 0), the method for obtaining asymp totics of this type is known in quantum mechanics as the WKB-method. We preserve this terminology in the case ImS(x) ~ 0 and develop the method for a wide class of problems in mathematical physics. Asymptotics of this type were constructed recently for many linear prob lems of mathematical physics; certain specific formulas were obtained by differ ent methods (V. M. Babich [5 -7], V. P. Lazutkin [76], A. A. Sokolov, 1. M. Ter nov [113], J. Schwinger [107, 108], E. J. Heller [53], G. A. Hagedorn [50, 51], V. N. Bayer, V. M. Katkov [21], N. A. Chernikov [35] and others). However, a general (Hamiltonian) formalism for obtaining asymptotics of this type is clearly required; this state of affairs is expressed both in recent mathematical and physical literature. For example, the editors of the collected volume [106] write in its preface: "One can hope that in the near future a computational pro cedure for fields with complex phase, similar to the usual one for fields with real phase, will be developed.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book deals with asymptotic solutions of linear and nonlinear equa tions which decay as h ---+ 0 outside a neighborhood of certain points, curves and surfaces. Such solutions are almost everywhere well approximated by the functions cp(x) exp{iS(x)/h}, x E 1R3, where S(x) is complex, and ImS(x) ~ o. When the phase S(x) is real (ImS(x) = 0), the method for obtaining asymp totics of this type is known in quantum mechanics as the WKB-method. We preserve this terminology in the case ImS(x) ~ 0 and develop the method for a wide class of problems in mathematical physics. Asymptotics of this type were constructed recently for many linear prob lems of mathematical physics; certain specific formulas were obtained by differ ent methods (V. M. Babich [5 -7], V. P. Lazutkin [76], A. A. Sokolov, 1. M. Ter nov [113], J. Schwinger [107, 108], E. J. Heller [53], G. A. Hagedorn [50, 51], V. N. Bayer, V. M. Katkov [21], N. A. Chernikov [35] and others). However, a general (Hamiltonian) formalism for obtaining asymptotics of this type is clearly required; this state of affairs is expressed both in recent mathematical and physical literature. For example, the editors of the collected volume [106] write in its preface: "One can hope that in the near future a computational pro cedure for fields with complex phase, similar to the usual one for fields with real phase, will be developed.
When this book was first published (in Russian), it proved to become the fountainhead of a major stream of important papers in mathematics, physics and even chemistry; indeed, it formed the basis of new methodology and opened new directions for research. The present English edition includes new examples of applications to physics, hitherto unpublished or available only in Russian. Its central mathematical idea is to use topological methods to analyze isotropic invariant manifolds in order to obtain asymptotic series of eigenvalues and eigenvectors for the multi-dimensional Schrödinger equation, and also to take into account the so-called tunnel effects. Finite-dimensional linear theory is reviewed in detail. Infinite-dimensional linear theory and its applications to quantum statistics and quantum field theory, as well as the nonlinear theory (involving instantons), will be considered in a second volume.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoGRATIS gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Bookfarm, Löbnitz, Alemania
Hardcover. VII, 300 S. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03762 3764350881 Sprache: Englisch Gewicht in Gramm: 550. Nº de ref. del artículo: 2489688
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bernhardt, Kassel, Alemania
Karton. Condición: Sehr gut. Zust: Gutes Exemplar. 300 Seiten, mit Abbildungen; Englisch 650g. Nº de ref. del artículo: 494733
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bernhardt, Kassel, Alemania
Karton. Condición: Sehr gut. Zust: Gutes Exemplar. 300 S. Englisch 648g. Nº de ref. del artículo: 483909
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 573257/1
Cantidad disponible: 1 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-157822
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book deals with asymptotic solutions of linear and nonlinear equa tions which decay as h ---+ 0 outside a neighborhood of certain points, curves and surfaces. Such solutions are almost everywhere well approximated by the functions cp(x) exp{iS(x)/h}, x E 1R3, where S(x) is complex, and ImS(x) ~ o. When the phase S(x) is real (ImS(x) = 0), the method for obtaining asymp totics of this type is known in quantum mechanics as the WKB-method. We preserve this terminology in the case ImS(x) ~ 0 and develop the method for a wide class of problems in mathematical physics. Asymptotics of this type were constructed recently for many linear prob lems of mathematical physics; certain specific formulas were obtained by differ ent methods (V. M. Babich [5 -7], V. P. Lazutkin [76], A. A. Sokolov, 1. M. Ter nov [113], J. Schwinger [107, 108], E. J. Heller [53], G. A. Hagedorn [50, 51], V. N. Bayer, V. M. Katkov [21], N. A. Chernikov [35] and others). However, a general (Hamiltonian) formalism for obtaining asymptotics of this type is clearly required; this state of affairs is expressed both in recent mathematical and physical literature. For example, the editors of the collected volume [106] write in its preface: 'One can hope that in the near future a computational pro cedure for fields with complex phase, similar to the usual one for fields with real phase, will be developed. 304 pp. Englisch. Nº de ref. del artículo: 9783764350888
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book deals with asymptotic solutions of linear and nonlinear equa tions which decay as h ---+ 0 outside a neighborhood of certain points, curves and surfaces. Such solutions are almost everywhere well approximated by the functions cp(x) exp{iS(x)/h}, x E 1R3, where S(x) is complex, and ImS(x) ~ o. When the phase S(x) is real (ImS(x) = 0), the method for obtaining asymp totics of this type is known in quantum mechanics as the WKB-method. We preserve this terminology in the case ImS(x) ~ 0 and develop the method for a wide class of problems in mathematical physics. Asymptotics of this type were constructed recently for many linear prob lems of mathematical physics; certain specific formulas were obtained by differ ent methods (V. M. Babich [5 -7], V. P. Lazutkin [76], A. A. Sokolov, 1. M. Ter nov [113], J. Schwinger [107, 108], E. J. Heller [53], G. A. Hagedorn [50, 51], V. N. Bayer, V. M. Katkov [21], N. A. Chernikov [35] and others). However, a general (Hamiltonian) formalism for obtaining asymptotics of this type is clearly required; this state of affairs is expressed both in recent mathematical and physical literature. For example, the editors of the collected volume [106] write in its preface: 'One can hope that in the near future a computational pro cedure for fields with complex phase, similar to the usual one for fields with real phase, will be developed. Nº de ref. del artículo: 9783764350888
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783764350888_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. I. Equations and problems of narrow beam mechanics.- II. Hamiltonian formalism of narrow beams.- III. Approximate solutions of the nonstationary transport equation.- IV. Stationary Hamilton-Jacobi and transport equations.- V. Complex Hamiltonian formalism o. Nº de ref. del artículo: 5279069
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 316. Nº de ref. del artículo: 263091227
Cantidad disponible: 1 disponibles