Assume that after preconditioning we are given a fixed point problem x = Lx + f (*) where L is a bounded linear operator which is not assumed to be symmetric and f is a given vector. The book discusses the convergence of Krylov subspace methods for solving fixed point problems (*), and focuses on the dynamical aspects of the iteration processes. For example, there are many similarities between the evolution of a Krylov subspace process and that of linear operator semigroups, in particular in the beginning of the iteration. A lifespan of an iteration might typically start with a fast but slowing phase. Such a behavior is sublinear in nature, and is essentially independent of whether the problem is singular or not. Then, for nonsingular problems, the iteration might run with a linear speed before a possible superlinear phase. All these phases are based on different mathematical mechanisms which the book outlines. The goal is to know how to precondition effectively, both in the case of "numerical linear algebra" (where one usually thinks of first fixing a finite dimensional problem to be solved) and in function spaces where the "preconditioning" corresponds to software which approximately solves the original problem.
"Sinopsis" puede pertenecer a otra edición de este libro.
Assume that after preconditioning we are given a fixed point problem x = Lx + f (*) where L is a bounded linear operator which is not assumed to be symmetric and f is a given vector. The book discusses the convergence of Krylov subspace methods for solving fixed point problems (*), and focuses on the dynamical aspects of the iteration processes. For example, there are many similarities between the evolution of a Krylov subspace process and that of linear operator semigroups, in particular in the beginning of the iteration. A lifespan of an iteration might typically start with a fast but slowing phase. Such a behavior is sublinear in nature, and is essentially independent of whether the problem is singular or not. Then, for nonsingular problems, the iteration might run with a linear speed before a possible superlinear phase. All these phases are based on different mathematical mechanisms which the book outlines. The goal is to know how to precondition effectively, both in the case of "numerical linear algebra" (where one usually thinks of first fixing a finite dimensional problem to be solved) and in function spaces where the "preconditioning" corresponds to software which approximately solves the original problem.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Bookfarm, Löbnitz, Alemania
Softcover. VII, 177 S. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03513 3764328657 Sprache: Englisch Gewicht in Gramm: 550. Nº de ref. del artículo: 2489426
Cantidad disponible: 1 disponibles
Librería: Ammareal, Morangis, Francia
Softcover. Condición: Très bon. Ancien livre de bibliothèque. Edition 1993. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Former library book. Edition 1993. Ammareal gives back up to 15% of this item's net price to charity organizations. Nº de ref. del artículo: D-938-493
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 192 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 630071/202
Cantidad disponible: 3 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Assume that after preconditioning we are given a fixed point problem x = Lx + f (\*) where L is a bounded linear operator which is not assumed to be symmetric and f is a given vector. The book discusses the convergence of Krylov subspace methods for solving fixed point problems (\*), and focuses on the dynamical aspects of the iteration processes. For example, there are many similarities between the evolution of a Krylov subspace process and that of linear operator semigroups, in particular in the beginning of the iteration. A lifespan of an iteration might typically start with a fast but slowing phase. Such a behavior is sublinear in nature, and is essentially independent of whether the problem is singular or not. Then, for nonsingular problems, the iteration might run with a linear speed before a possible superlinear phase. All these phases are based on different mathematical mechanisms which the book outlines. The goal is to know how to precondition effectively, both in the case of 'numerical linear algebra' (where one usually thinks of first fixing a finite dimensional problem to be solved) and in function spaces where the 'preconditioning' corresponds to software which approximately solves the original problem. 180 pp. Englisch. Nº de ref. del artículo: 9783764328658
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Assume that after preconditioning we are given a fixed point problem x = Lx + f (\*) where L is a bounded linear operator which is not assumed to be symmetric and f is a given vector. The book discusses the convergence of Krylov subspace methods for solving fixed point problems (\*), and focuses on the dynamical aspects of the iteration processes. For example, there are many similarities between the evolution of a Krylov subspace process and that of linear operator semigroups, in particular in the beginning of the iteration. A lifespan of an iteration might typically start with a fast but slowing phase. Such a behavior is sublinear in nature, and is essentially independent of whether the problem is singular or not. Then, for nonsingular problems, the iteration might run with a linear speed before a possible superlinear phase. All these phases are based on different mathematical mechanisms which the book outlines. The goal is to know how to precondition effectively, both in the case of 'numerical linear algebra' (where one usually thinks of first fixing a finite dimensional problem to be solved) and in function spaces where the 'preconditioning' corresponds to software which approximately solves the original problem. Nº de ref. del artículo: 9783764328658
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Assume that after preconditioning we are given a fixed point problem x = Lx + f (*) where L is a bounded linear operator which is not assumed to be symmetric and f is a given vector. The book discusses the convergence of Krylov subspace methods for solving . Nº de ref. del artículo: 5279007
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783764328658
Cantidad disponible: 10 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783764328658
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Assume that after preconditioning we are given a fixed point problem x = Lx + f (\*) where L is a bounded linear operator which is not assumed to be symmetric and f is a given vector. The book discusses the convergence of Krylov subspace methods for solving fixed point problems (\*), and focuses on the dynamical aspects of the iteration processes. For example, there are many similarities between the evolution of a Krylov subspace process and that of linear operator semigroups, in particular in the beginning of the iteration. A lifespan of an iteration might typically start with a fast but slowing phase. Such a behavior is sublinear in nature, and is essentially independent of whether the problem is singular or not. Then, for nonsingular problems, the iteration might run with a linear speed before a possible superlinear phase. All these phases are based on different mathematical mechanisms which the book outlines. The goal is to know how to precondition effectively, both in the case of 'numerical linear algebra' (where one usually thinks of first fixing a finite dimensional problem to be solved) and in function spaces where the 'preconditioning' corresponds to software which approximately solves the original problem.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 192 pp. Englisch. Nº de ref. del artículo: 9783764328658
Cantidad disponible: 2 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA79037643286576
Cantidad disponible: 1 disponibles