0.1 Introduction These lecture notes describe a new development in the calculus of variations which is called Aubry-Mather-Theory. The starting point for the theoretical physicist Aubry was a model for the descrip tion of the motion of electrons in a two-dimensional crystal. Aubry investigated a related discrete variational problem and the corresponding minimal solutions. On the other hand, Mather started with a specific class of area-preserving annulus mappings, the so-called monotone twist maps. These maps appear in mechanics as Poincare maps. Such maps were studied by Birkhoff during the 1920s in several papers. In 1982, Mather succeeded to make essential progress in this field and to prove the existence of a class of closed invariant subsets which are now called Mather sets. His existence theorem is based again on a variational principle. Although these two investigations have different motivations, they are closely re lated and have the same mathematical foundation. We will not follow those ap proaches but will make a connection to classical results of Jacobi, Legendre, Weier strass and others from the 19th century. Therefore in Chapter I, we will put together the results of the classical theory which are the most important for us. The notion of extremal fields will be most relevant. In Chapter II we will investigate variational problems on the 2-dimensional torus. We will look at the corresponding global minimals as well as at the relation be tween minimals and extremal fields. In this way, we will be led to Mather sets.
"Sinopsis" puede pertenecer a otra edición de este libro.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 16,00 gastos de envío desde Alemania a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,27 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Antiquariat Bookfarm, Löbnitz, Alemania
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 49 MOS 9783764321857 Sprache: Englisch Gewicht in Gramm: 550. Nº de ref. del artículo: 2507245
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 6427535-n
Cantidad disponible: 15 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0316110058551
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. These lecture notes describe the Aubry-Mather-Theory within the calculus of variations. The text consists of the translated original lectures of Jurgen Moser and a bibliographic appendix with comments on the current state of the art in this field of interest. Students will find a rapid introduction to the calculus of variations, leading to modern dynamical systems theory. Differential geometric applications are discussed, in particular billiards and minimal geodesics on the two-dimensional torus. Many exercises and open questions make this book a valuable resource for both teaching and research. On the other hand, Mather started with a specific class of area-preserving annulus mappings, the so-called monotone twist maps. These maps appear in mechanics as Poincare maps. In 1982, Mather succeeded to make essential progress in this field and to prove the existence of a class of closed invariant subsets which are now called Mather sets. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783764321857
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
Softcover. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-01421 9783764321857 Sprache: Englisch Gewicht in Gramm: 550. Nº de ref. del artículo: 2485286
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 49 MOS 9783764321857 Sprache: Englisch Gewicht in Gramm: 500. Nº de ref. del artículo: 2498105
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 6427535
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783764321857_new
Cantidad disponible: Más de 20 disponibles
Librería: Antiquariat Bernhardt, Kassel, Alemania
kartoniert. Condición: Sehr gut. Zust: Gutes Exemplar. 132 Seiten, mit Abbildungen, Englisch 274g. Nº de ref. del artículo: 494018
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -0.1 Introduction These lecture notes describe a new development in the calculus of variations which is called Aubry-Mather-Theory. The starting point for the theoretical physicist Aubry was a model for the descrip tion of the motion of electrons in a two-dimensional crystal. Aubry investigated a related discrete variational problem and the corresponding minimal solutions. On the other hand, Mather started with a specific class of area-preserving annulus mappings, the so-called monotone twist maps. These maps appear in mechanics as Poincare maps. Such maps were studied by Birkhoff during the 1920s in several papers. In 1982, Mather succeeded to make essential progress in this field and to prove the existence of a class of closed invariant subsets which are now called Mather sets. His existence theorem is based again on a variational principle. Although these two investigations have different motivations, they are closely re lated and have the same mathematical foundation. We will not follow those ap proaches but will make a connection to classical results of Jacobi, Legendre, Weier strass and others from the 19th century. Therefore in Chapter I, we will put together the results of the classical theory which are the most important for us. The notion of extremal fields will be most relevant. In Chapter II we will investigate variational problems on the 2-dimensional torus. We will look at the corresponding global minimals as well as at the relation be tween minimals and extremal fields. In this way, we will be led to Mather sets. 134 pp. Englisch. Nº de ref. del artículo: 9783764321857
Cantidad disponible: 2 disponibles