A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature.
The book is aimed at advanced graduate students and researchers in the area, leading to current research problems.
"Sinopsis" puede pertenecer a otra edición de este libro.
A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature.
The book is aimed at advanced graduate students and researchers in the area, leading to current research problems.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^\*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^\*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature. The book is aimed at advanced graduate students and researchers in the area, leading to current research problems. 140 pp. Englisch. Nº de ref. del artículo: 9783764304089
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783764304089_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^\*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^\*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature. The book is aimed at advanced graduate students and researchers in the area, leading to current research problems. Nº de ref. del artículo: 9783764304089
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents the interplay of K-homology and analytic K-theoryMultidiciplinary introduction to K-theoryEqual emphasis on topology and analysisA concise introduction to the techniques used to prove the Baum-Connes conjecture. The . Nº de ref. del artículo: 5278530
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783764304089
Cantidad disponible: 10 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 144. Nº de ref. del artículo: 26377936
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 144 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 7502735
Cantidad disponible: 4 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783764304089
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 144. Nº de ref. del artículo: 18377946
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^\*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^\*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature.The book is aimed at advanced graduate students and researchers in the area, leading to current research problems.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 144 pp. Englisch. Nº de ref. del artículo: 9783764304089
Cantidad disponible: 2 disponibles