A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature.
The book is aimed at advanced graduate students and researchers in the area, leading to current research problems.
"Sinopsis" puede pertenecer a otra edición de este libro.
A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature.
The book is aimed at advanced graduate students and researchers in the area, leading to current research problems.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Orion Tech, Kingwood, TX, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: 3764304081-11-34993930
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783764304089_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783764304089
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^\*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^\*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature. The book is aimed at advanced graduate students and researchers in the area, leading to current research problems. 140 pp. Englisch. Nº de ref. del artículo: 9783764304089
Cantidad disponible: 2 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. The Baum-Connes conjecture predicts that the K-homology of the reduced C^*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. This book includes introduction to the techniques used to prove the Baum-Connes conjecture. Series: Advanced Courses in Mathematics - CRM Barcelona. Num Pages: 144 pages, 2 black & white illustrations, biography. BIC Classification: PBMP. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 239 x 174 x 11. Weight in Grams: 576. . 2003. Paperback. . . . . Nº de ref. del artículo: V9783764304089
Cantidad disponible: 15 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents the interplay of K-homology and analytic K-theoryMultidiciplinary introduction to K-theoryEqual emphasis on topology and analysisA concise introduction to the techniques used to prove the Baum-Connes conjecture. The . Nº de ref. del artículo: 5278530
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 1st edition. 131 pages. 9.25x6.50x0.50 inches. In Stock. Nº de ref. del artículo: x-3764304081
Cantidad disponible: 2 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. The Baum-Connes conjecture predicts that the K-homology of the reduced C^*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. This book includes introduction to the techniques used to prove the Baum-Connes conjecture. Series: Advanced Courses in Mathematics - CRM Barcelona. Num Pages: 144 pages, 2 black & white illustrations, biography. BIC Classification: PBMP. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 239 x 174 x 11. Weight in Grams: 576. . 2003. Paperback. . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9783764304089
Cantidad disponible: 15 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^\*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^\*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature.The book is aimed at advanced graduate students and researchers in the area, leading to current research problems.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 144 pp. Englisch. Nº de ref. del artículo: 9783764304089
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - A concise introduction to the techniques used to prove the Baum-Connes conjecture. The Baum-Connes conjecture predicts that the K-homology of the reduced C^\*-algebra of a group can be computed as the equivariant K-homology of the classifying space for proper actions. The approach is expository, but it contains proofs of many basic results on topological K-homology and the K-theory of C^\*-algebras. It features a detailed introduction to Bredon homology for infinite groups, with applications to K-homology. It also contains a detailed discussion of naturality questions concerning the assembly map, a topic not well documented in the literature. The book is aimed at advanced graduate students and researchers in the area, leading to current research problems. Nº de ref. del artículo: 9783764304089
Cantidad disponible: 1 disponibles