Artículos relacionados a Neuronale Netze und Deep Learning kapieren: Der einfache...

Neuronale Netze und Deep Learning kapieren: Der einfache Praxiseinstieg mit Beispielen in Python - Tapa blanda

 
9783747500156: Neuronale Netze und Deep Learning kapieren: Der einfache Praxiseinstieg mit Beispielen in Python

Sinopsis

  • Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-Algorithmen
  • Anschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPy
  • Keine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlich

Deep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht.

Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz.

Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.

Aus dem Inhalt:
  • Parametrische und nichtparametrische Modelle
  • Überwachtes und unüberwachtes Lernen
  • Vorhersagen mit mehreren Ein- und Ausgaben
  • Fehler messen und verringern
  • Hot und Cold Learning
  • Batch- und stochastischer Gradientenabstieg
  • Überanpassung vermeiden
  • Generalisierung
  • Dropout-Verfahren
  • Backpropagation und Forward Propagation
  • Bilderkennung
  • Verarbeitung natürlicher Sprache (NLP)
  • Sprachmodellierung
  • Aktivierungsfunktionen
    • Sigmoid-Funktion
    • Tangens hyperbolicus
    • Softmax
  • Convolutional Neural Networks (CNNs)
  • Recurrent Neural Networks (RNNs)
  • Long Short-Term Memory (LSTM)
  • Deep-Learning-Framework erstellen

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Andrew W. Trask ist Doktorand an der Oxford University und als Research Scientist für DeepMind tätig. Zuvor war er Researcher und Analytics Product Manager bei Digital Reasoning, wo er das größte künstliche Neuronale Netz der Welt trainierte und für die Analytics Roadmap der Synthesys Cognitive Computing Platform verantwortlich war.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Bueno
Gut/Very good: Buch bzw. Schutzumschlag...
Ver este artículo

EUR 6,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Neuronale Netze und Deep Learning kapieren: Der einfache...

Imagen de archivo

Andrew W. Trask
Publicado por MITP, 2019
ISBN 10: 3747500153 ISBN 13: 9783747500156
Antiguo o usado Tapa blanda

Librería: medimops, Berlin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Nº de ref. del artículo: M03747500153-V

Contactar al vendedor

Comprar usado

EUR 23,99
Convertir moneda
Gastos de envío: EUR 6,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Andrew W. Trask
Publicado por MITP, 2019
ISBN 10: 3747500153 ISBN 13: 9783747500156
Antiguo o usado Tapa blanda

Librería: medimops, Berlin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: acceptable. Ausreichend/Acceptable: Exemplar mit vollständigem Text und sämtlichen Abbildungen oder Karten. Schmutztitel oder Vorsatz können fehlen. Einband bzw. Schutzumschlag weisen unter Umständen starke Gebrauchsspuren auf. / Describes a book or dust jacket that has the complete text pages (including those with maps or plates) but may lack endpapers, half-title, etc. (which must be noted). Binding, dust jacket (if any), etc may also be worn. Nº de ref. del artículo: M03747500153-B

Contactar al vendedor

Comprar usado

EUR 23,99
Convertir moneda
Gastos de envío: EUR 6,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Andrew W. Trask
Publicado por MITP Verlags Gmbh Dez 2019, 2019
ISBN 10: 3747500153 ISBN 13: 9783747500156
Nuevo Taschenbuch

Librería: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlichDeep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.Aus dem Inhalt:Parametrische und nichtparametrische ModelleÜberwachtes und unüberwachtes LernenVorhersagen mit mehreren Ein- und AusgabenFehler messen und verringernHot und Cold LearningBatch- und stochastischer GradientenabstiegÜberanpassung vermeidenGeneralisierungDropout-VerfahrenBackpropagation und Forward PropagationBilderkennungVerarbeitung natürlicher Sprache (NLP)SprachmodellierungAktivierungsfunktionenSigmoid-FunktionTangens hyperbolicusSoftmaxConvolutional Neural Networks (CNNs)Recurrent Neural Networks (RNNs)Long Short-Term Memory (LSTM)Deep-Learning-Framework erstellen 354 pp. Deutsch. Nº de ref. del artículo: 9783747500156

Contactar al vendedor

Comprar nuevo

EUR 29,99
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Andrew W. Trask
Publicado por MITP Verlags Gmbh Dez 2019, 2019
ISBN 10: 3747500153 ISBN 13: 9783747500156
Nuevo Taschenbuch

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlichDeep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.Aus dem Inhalt:Parametrische und nichtparametrische ModelleÜberwachtes und unüberwachtes LernenVorhersagen mit mehreren Ein- und AusgabenFehler messen und verringernHot und Cold LearningBatch- und stochastischer GradientenabstiegÜberanpassung vermeidenGeneralisierungDropout-VerfahrenBackpropagation und Forward PropagationBilderkennungVerarbeitung natürlicher Sprache (NLP)SprachmodellierungAktivierungsfunktionenSigmoid-FunktionTangens hyperbolicusSoftmaxConvolutional Neural Networks (CNNs)Recurrent Neural Networks (RNNs)Long Short-Term Memory (LSTM)Deep-Learning-Framework erstellen 354 pp. Deutsch. Nº de ref. del artículo: 9783747500156

Contactar al vendedor

Comprar nuevo

EUR 29,99
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Andrew W. Trask
Publicado por MITP Verlags Gmbh Dez 2019, 2019
ISBN 10: 3747500153 ISBN 13: 9783747500156
Nuevo Taschenbuch

Librería: Wegmann1855, Zwiesel, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Aus dem Inhalt: Nº de ref. del artículo: 9783747500156

Contactar al vendedor

Comprar nuevo

EUR 29,99
Convertir moneda
Gastos de envío: EUR 11,90
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Andrew W. Trask
Publicado por MITP Verlags Gmbh Dez 2019, 2019
ISBN 10: 3747500153 ISBN 13: 9783747500156
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware - Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlichDeep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.Aus dem Inhalt:Parametrische und nichtparametrische ModelleÜberwachtes und unüberwachtes LernenVorhersagen mit mehreren Ein- und AusgabenFehler messen und verringernHot und Cold LearningBatch- und stochastischer GradientenabstiegÜberanpassung vermeidenGeneralisierungDropout-VerfahrenBackpropagation und Forward PropagationBilderkennungVerarbeitung natürlicher Sprache (NLP)SprachmodellierungAktivierungsfunktionenSigmoid-FunktionTangens hyperbolicusSoftmaxConvolutional Neural Networks (CNNs)Recurrent Neural Networks (RNNs)Long Short-Term Memory (LSTM)Deep-Learning-Framework erstellen. Nº de ref. del artículo: 9783747500156

Contactar al vendedor

Comprar nuevo

EUR 29,99
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Andrew W. Trask
Publicado por MITP Verlags Gmbh Dez 2019, 2019
ISBN 10: 3747500153 ISBN 13: 9783747500156
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Aus dem Inhalt:MITP Verlags GmbH, Augustinusstraße 9a, 50226 Frechen 354 pp. Deutsch. Nº de ref. del artículo: 9783747500156

Contactar al vendedor

Comprar nuevo

EUR 29,99
Convertir moneda
Gastos de envío: EUR 16,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Andrew W. Task
Publicado por MITP, 2019
ISBN 10: 3747500153 ISBN 13: 9783747500156
Nuevo Tapa blanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 401922189

Contactar al vendedor

Comprar nuevo

EUR 37,62
Convertir moneda
Gastos de envío: EUR 10,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Andrew W. Task
Publicado por MITP, 2019
ISBN 10: 3747500153 ISBN 13: 9783747500156
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 39011512

Contactar al vendedor

Comprar usado

EUR 30,74
Convertir moneda
Gastos de envío: EUR 17,07
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 3 disponibles

Añadir al carrito

Imagen de archivo

Trask, Andrew W.
Publicado por MITP Verlags GmbH, 2019
ISBN 10: 3747500153 ISBN 13: 9783747500156
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. German language. 9.37x6.61x0.87 inches. In Stock. Nº de ref. del artículo: __3747500153

Contactar al vendedor

Comprar nuevo

EUR 37,06
Convertir moneda
Gastos de envío: EUR 11,52
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 6 copia(s) de este libro

Ver todos los resultados de su búsqueda