Artículos relacionados a Regression: Models, Methods and Applications

Regression: Models, Methods and Applications - Tapa blanda

 
9783662638842: Regression: Models, Methods and Applications

Sinopsis

Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through numerous examples and case studies. The most important definitions and statements are concisely summarized in boxes, and the underlying data sets and code are available online on the book's dedicated website. Availability of (user-friendly) software has been a major criterion for the methods selected and presented.

The chapters address the classical linear model and its extensions, generalized linear models, categorical regression models, mixed models, nonparametric regression, structured additive regression, quantile regression and distributional regression models. Two appendices describe the required matrix algebra, as well as elements of probability calculus and statistical inference.

In this substantially revised and updated new edition the overview on regression models has been extended, and now includes the relation between regression models and machine learning, additional details on statistical inference in structured additive regression models have been added and a completely reworked chapter augments the presentation of quantile regression with a comprehensive introduction to distributional regression models. Regularization approaches are now more extensively discussed in most chapters of the book.

The book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written at an intermediate mathematical level and assumes only knowledge of basic probability, calculus, matrix algebra and statistics.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Ludwig Fahrmeir is Professor Emeritus at the Institute of Statistics at LMU Munich, Germany. From 1995 to 2006 he was the speaker of the Collaborative Research Center 'Statistical Analysis of Discrete Structures', supported financially by the German National Science Foundation. His main research interests include semiparametric regression, longitudinal data analysis and spatial statistics, with applications ranging from social science and risk management to public health and neuroscience.

Thomas Kneib is a Professor of Statistics at the University of Göttingen, Germany, where he is the Speaker of the interdisciplinary Centre for Statistics and Vice-Speaker of the Campus Institute Data Science. He received his PhD in Statistics at LMU Munich and, during his PostDoc phase, was Visiting Professor of Applied Statistics at the University of Ulm and Substitute Professor of Statistics at the University of Göttingen. From 2009 until 2011 he was Professor of Applied Statistics at Carl von Ossietzky University Oldenburg. His main research interests include semiparametric regression, spatial statistics and distributional regression.

Stefan Lang is a Professor of Applied Statistics at the University of Innsbruck, Austria. He received his PhD at LMU Munich. From 2005 to 2006 he was Professor of Statistics at the University of Leipzig. He is currently Associate Editor of the journal Statistical Modelling. His main research interests include semiparametric and spatial regression, multilevel modelling and complex Bayesian models, with applications, among others, in development economics, environmetrics, marketing science, real estate and actuarial science.

Brian D. Marx was Professor at the Department of Experimental Statistics at Louisiana State University, LA, USA. He passed away shortly after the authors finished the work on this 2nd edition. His main research interests included P-spline smoothing, ill-conditioned regression problems, and high-dimensional chemometric applications. He was serving as Coordinating Editor for the journal Statistical Modelling for many years, was Chair of the Statistical Modelling Society, and a Fellow of the American Statistical Association.

De la contraportada

Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through numerous examples and case studies. The most important definitions and statements are concisely summarized in boxes, and the underlying data sets and code are available online on the book's dedicated website. Availability of (user-friendly) software has been a major criterion for the methods selected and presented.

The chapters address the classical linear model and its extensions, generalized linear models, categorical regression models, mixed models, nonparametric regression, structured additive regression, quantile regression and distributional regression models. Two appendices describe the required matrix algebra, as well as elements of probability calculus and statistical inference.

In this substantially revised and updated new edition the overview on regression models has been extended, and now includes the relation between regression models and machine learning, additional details on statistical inference in structured additive regression models have been added and a completely reworked chapter augments the presentation of quantile regression with a comprehensive introduction to distributional regression models. Regularization approaches are now more extensively discussed in most chapters of the book.

The book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written at an intermediate mathematical level and assumes only knowledge of basic probability, calculus, matrix algebra and statistics.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

GRATIS gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783662638811: Regression: Models, Methods and Applications

Edición Destacada

ISBN 10:  3662638819 ISBN 13:  9783662638811
Editorial: Springer, 2022
Tapa dura

Resultados de la búsqueda para Regression: Models, Methods and Applications

Imagen de archivo

Fahrmeir
Publicado por Springer, 2023
ISBN 10: 3662638843 ISBN 13: 9783662638842
Nuevo Tapa blanda

Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-16688

Contactar al vendedor

Comprar nuevo

EUR 81,53
Convertir moneda
Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Fahrmeir, Ludwig; Kneib, Thomas; Lang, Stefan; Marx, Brian D.
Publicado por Springer, 2023
ISBN 10: 3662638843 ISBN 13: 9783662638842
Nuevo Tapa blanda

Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-243165

Contactar al vendedor

Comprar nuevo

EUR 88,54
Convertir moneda
Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

0
Publicado por Springer, 2023
ISBN 10: 3662638843 ISBN 13: 9783662638842
Nuevo Tapa blanda

Librería: Basi6 International, Irving, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-347486

Contactar al vendedor

Comprar nuevo

EUR 81,53
Convertir moneda
Gastos de envío: EUR 25,68
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Fahrmeir, Ludwig; Kneib, Thomas; Lang, Stefan; Marx, Brian D.
Publicado por Springer, 2023
ISBN 10: 3662638843 ISBN 13: 9783662638842
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. This item is printed on demand. Nº de ref. del artículo: 401429129

Contactar al vendedor

Comprar nuevo

EUR 98,67
Convertir moneda
Gastos de envío: EUR 10,37
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Fahrmeir, Ludwig; Kneib, Thomas; Lang, Stefan; Marx, Brian D.
Publicado por Springer, 2023
ISBN 10: 3662638843 ISBN 13: 9783662638842
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26396029270

Contactar al vendedor

Comprar nuevo

EUR 99,91
Convertir moneda
Gastos de envío: EUR 9,84
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

0
Publicado por Springer, 2023
ISBN 10: 3662638843 ISBN 13: 9783662638842
Nuevo Tapa blanda

Librería: Basi6 International, Irving, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-18427

Contactar al vendedor

Comprar nuevo

EUR 88,54
Convertir moneda
Gastos de envío: EUR 25,68
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Fahrmeir, Ludwig|Kneib, Thomas|Lang, Stefan|Marx, Brian D.
ISBN 10: 3662638843 ISBN 13: 9783662638842
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are p. Nº de ref. del artículo: 822910579

Contactar al vendedor

Comprar nuevo

EUR 98,54
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Fahrmeir, Ludwig; Kneib, Thomas; Lang, Stefan; Marx, Brian D.
Publicado por Springer, 2023
ISBN 10: 3662638843 ISBN 13: 9783662638842
Nuevo Tapa blanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 18396029276

Contactar al vendedor

Comprar nuevo

EUR 105,42
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ludwig Fahrmeir
ISBN 10: 3662638843 ISBN 13: 9783662638842
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through numerous examples and case studies. The most important definitions and statements are concisely summarized in boxes, and the underlying data sets and code are available online on the book's dedicated website. Availability of (user-friendly) software has been a major criterion for the methods selected and presented.The chapters address the classical linear model and its extensions, generalized linear models, categorical regression models, mixed models, nonparametric regression, structured additive regression, quantile regression and distributional regression models. Two appendices describe the required matrix algebra, as well as elements of probability calculus and statistical inference.In this substantially revised and updated new edition the overview on regression models has been extended, and now includes the relation between regression models and machine learning, additional details on statistical inference in structured additive regression models have been added and a completely reworked chapter augments the presentation of quantile regression with a comprehensive introduction to distributional regression models. Regularization approaches are now more extensively discussed in most chapters of the book.The book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written at an intermediate mathematical level and assumes only knowledge of basic probability, calculus, matrix algebra and statistics. 768 pp. Englisch. Nº de ref. del artículo: 9783662638842

Contactar al vendedor

Comprar nuevo

EUR 117,69
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Ludwig Fahrmeir
Publicado por Springer Berlin Heidelberg, 2023
ISBN 10: 3662638843 ISBN 13: 9783662638842
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through numerous examples and case studies. The most important definitions and statements are concisely summarized in boxes, and the underlying data sets and code are available online on the book's dedicated website. Availability of (user-friendly) software has been a major criterion for the methods selected and presented.The chapters address the classical linear model and its extensions, generalized linear models, categorical regression models, mixed models, nonparametric regression, structured additive regression, quantile regression and distributional regression models. Two appendices describe the required matrix algebra, as well as elements of probability calculus and statistical inference.In this substantially revised and updated new edition the overview on regression models has been extended, and now includes the relation between regression models and machine learning, additional details on statistical inference in structured additive regression models have been added and a completely reworked chapter augments the presentation of quantile regression with a comprehensive introduction to distributional regression models. Regularization approaches are now more extensively discussed in most chapters of the book.The book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written at an intermediate mathematical level and assumes only knowledge of basic probability, calculus, matrix algebra and statistics. Nº de ref. del artículo: 9783662638842

Contactar al vendedor

Comprar nuevo

EUR 117,69
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 3 copia(s) de este libro

Ver todos los resultados de su búsqueda