Artículos relacionados a Remote Sensing, Nonlinear Model, Supercomputing

Remote Sensing, Nonlinear Model, Supercomputing - Tapa blanda

 
9783659978203: Remote Sensing, Nonlinear Model, Supercomputing

Sinopsis

The novelty of this algorithm is to apply multiple sources of remote sensing data combined with data of unmanned weather stations, topography, ground cover,DEM, and astronomy and calendar rules. The results indicated that the model has high accuracy, reliability, and generalization ability. Factors such as cloudiness, ground vegetation, and water vapor show little interference, so the model seems suitable for large area retrieving under natural conditions. The required high-performance computation was achieved by a CPU + GPU isomery and synergy parallel computation system that improved computing speed by more than 1000-fold, with easily extendable computing capability. We found that the current algorithm is superior to seven major split-window algorithms and their best combined algorithms based on prediction errors, root-meansquare errors, and the percentage of data points with <3 ◦C absolute error. Our SVM approach overcomes shortcomings of classical temperature remote sensing technologies, and is the first report of such application.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

His research interests include multisource remote sensing image processing,GIS & GIS system developing, high-performance computation (HPC) and its application in processing RS image, support vector machine (SVM) algorithms and its merging into GIS system, and scalability of image processing for large remote sensing image with HPC.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialLAP LAMBERT Academic Publishing
  • Año de publicación2016
  • ISBN 10 3659978205
  • ISBN 13 9783659978203
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas84
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Remote Sensing, Nonlinear Model, Supercomputing

Imagen del vendedor

Jiang Lin Qin
ISBN 10: 3659978205 ISBN 13: 9783659978203
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The novelty of this algorithm is to apply multiple sources of remote sensing data combined with data of unmanned weather stations, topography, ground cover,DEM, and astronomy and calendar rules. The results indicated that the model has high accuracy, reliability, and generalization ability. Factors such as cloudiness, ground vegetation, and water vapor show little interference, so the model seems suitable for large area retrieving under natural conditions. The required high-performance computation was achieved by a CPU + GPU isomery and synergy parallel computation system that improved computing speed by more than 1000-fold, with easily extendable computing capability. We found that the current algorithm is superior to seven major split-window algorithms and their best combined algorithms based on prediction errors, root-meansquare errors, and the percentage of data points with 3 C absolute error. Our SVM approach overcomes shortcomings of classical temperature remote sensing technologies, and is the first report of such application. 84 pp. Englisch. Nº de ref. del artículo: 9783659978203

Contactar al vendedor

Comprar nuevo

EUR 23,90
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Jiang Lin Qin
Publicado por LAP LAMBERT Academic Publishing, 2016
ISBN 10: 3659978205 ISBN 13: 9783659978203
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The novelty of this algorithm is to apply multiple sources of remote sensing data combined with data of unmanned weather stations, topography, ground cover,DEM, and astronomy and calendar rules. The results indicated that the model has high accuracy, reliability, and generalization ability. Factors such as cloudiness, ground vegetation, and water vapor show little interference, so the model seems suitable for large area retrieving under natural conditions. The required high-performance computation was achieved by a CPU + GPU isomery and synergy parallel computation system that improved computing speed by more than 1000-fold, with easily extendable computing capability. We found that the current algorithm is superior to seven major split-window algorithms and their best combined algorithms based on prediction errors, root-meansquare errors, and the percentage of data points with 3 C absolute error. Our SVM approach overcomes shortcomings of classical temperature remote sensing technologies, and is the first report of such application. Nº de ref. del artículo: 9783659978203

Contactar al vendedor

Comprar nuevo

EUR 23,90
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Jiang Lin Qin
Publicado por LAP LAMBERT Academic Publishing, 2016
ISBN 10: 3659978205 ISBN 13: 9783659978203
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Qin Jiang LinHis research interests include multisource remote sensing image processing,GIS & GIS system developing, high-performance computation (HPC) and its application in processing RS image, support vector machine (SVM) algorith. Nº de ref. del artículo: 158964221

Contactar al vendedor

Comprar nuevo

EUR 22,32
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Qin, Jiang Lin
Publicado por LAP LAMBERT Academic Publishing, 2016
ISBN 10: 3659978205 ISBN 13: 9783659978203
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 84 pages. 8.66x5.91x0.19 inches. In Stock. Nº de ref. del artículo: 3659978205

Contactar al vendedor

Comprar nuevo

EUR 43,54
Convertir moneda
Gastos de envío: EUR 11,87
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Jiang Lin Qin
ISBN 10: 3659978205 ISBN 13: 9783659978203
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -The novelty of this algorithm is to apply multiple sources of remote sensing data combined with data of unmanned weather stations, topography, ground cover,DEM, and astronomy and calendar rules. The results indicated that the model has high accuracy, reliability, and generalization ability. Factors such as cloudiness, ground vegetation, and water vapor show little interference, so the model seems suitable for large area retrieving under natural conditions. The required high-performance computation was achieved by a CPU + GPU isomery and synergy parallel computation system that improved computing speed by more than 1000-fold, with easily extendable computing capability. We found that the current algorithm is superior to seven major split-window algorithms and their best combined algorithms based on prediction errors, root-meansquare errors, and the percentage of data points withBooks on Demand GmbH, Überseering 33, 22297 Hamburg 84 pp. Englisch. Nº de ref. del artículo: 9783659978203

Contactar al vendedor

Comprar nuevo

EUR 23,90
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito