The book investigates the flow of non-Newtonian fluids in porous media using pore-scale network modeling. Non-Newtonian fluids show very complex time and strain dependent behavior and may have initial yield stress. Their common feature is that they do not obey the simple Newtonian relation of proportionality between stress and rate of deformation. They are generally classified into three main categories: time-independent, time-dependent and viscoelastic. Two three-dimensional networks representing a sand pack and Berea sandstone were used. An iterative numerical technique is used to solve the pressure field and obtain the flow rate and apparent viscosity. The time-independent category is investigated using two fluid models: Ellis and Herschel-Bulkley. The analysis confirmed the reliability of the non-Newtonian network model used in this study. Good results are obtained, especially for the Ellis model, when comparing the network model results to experimental data sets found in the literature. The yield-stress phenomenon is also investigated and several numerical algorithms were developed and implemented to predict threshold yield pressure of the network.
"Sinopsis" puede pertenecer a otra edición de este libro.
The book investigates the flow of non-Newtonian fluids in porous media using pore-scale network modeling. Non-Newtonian fluids show very complex time and strain dependent behavior and may have initial yield stress. Their common feature is that they do not obey the simple Newtonian relation of proportionality between stress and rate of deformation. They are generally classified into three main categories: time-independent, time-dependent and viscoelastic. Two three-dimensional networks representing a sand pack and Berea sandstone were used. An iterative numerical technique is used to solve the pressure field and obtain the flow rate and apparent viscosity. The time-independent category is investigated using two fluid models: Ellis and Herschel-Bulkley. The analysis confirmed the reliability of the non-Newtonian network model used in this study. Good results are obtained, especially for the Ellis model, when comparing the network model results to experimental data sets found in the literature. The yield-stress phenomenon is also investigated and several numerical algorithms were developed and implemented to predict threshold yield pressure of the network.
The author holds a BEng in electronics engineering from Middlesex University, a BSc in physics from Open University, a PhD in petroleum engineering from Imperial College London, a PhD in Crystallography from Birkbeck College London, and a PhD in atomic and molecular physics with astronomy from University College London.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Sochi TahaThe author holds a BEng in electronics engineering from Middlesex University, a BSc in physics from Open University, a PhD in petroleum engineering from Imperial College London, a PhD in Crystallography from Birkbeck Colleg. Nº de ref. del artículo: 159148279
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The book investigates the flow of non-Newtonian fluids in porous media using pore-scale network modeling. Non-Newtonian fluids show very complex time and strain dependent behavior and may have initial yield stress. Their common feature is that they do not obey the simple Newtonian relation of proportionality between stress and rate of deformation. They are generally classified into three main categories: time-independent, time-dependent and viscoelastic. Two three-dimensional networks representing a sand pack and Berea sandstone were used. An iterative numerical technique is used to solve the pressure field and obtain the flow rate and apparent viscosity. The time-independent category is investigated using two fluid models: Ellis and Herschel-Bulkley. The analysis confirmed the reliability of the non-Newtonian network model used in this study. Good results are obtained, especially for the Ellis model, when comparing the network model results to experimental data sets found in the literature. The yield-stress phenomenon is also investigated and several numerical algorithms were developed and implemented to predict threshold yield pressure of the network. 196 pp. Englisch. Nº de ref. del artículo: 9783659951848
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The book investigates the flow of non-Newtonian fluids in porous media using pore-scale network modeling. Non-Newtonian fluids show very complex time and strain dependent behavior and may have initial yield stress. Their common feature is that they do not obey the simple Newtonian relation of proportionality between stress and rate of deformation. They are generally classified into three main categories: time-independent, time-dependent and viscoelastic. Two three-dimensional networks representing a sand pack and Berea sandstone were used. An iterative numerical technique is used to solve the pressure field and obtain the flow rate and apparent viscosity. The time-independent category is investigated using two fluid models: Ellis and Herschel-Bulkley. The analysis confirmed the reliability of the non-Newtonian network model used in this study. Good results are obtained, especially for the Ellis model, when comparing the network model results to experimental data sets found in the literature. The yield-stress phenomenon is also investigated and several numerical algorithms were developed and implemented to predict threshold yield pressure of the network. Nº de ref. del artículo: 9783659951848
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26404342770
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 409892909
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -The book investigates the flow of non-Newtonian fluids in porous media using pore-scale network modeling. Non-Newtonian fluids show very complex time and strain dependent behavior and may have initial yield stress. Their common feature is that they do not obey the simple Newtonian relation of proportionality between stress and rate of deformation. They are generally classified into three main categories: time-independent, time-dependent and viscoelastic. Two three-dimensional networks representing a sand pack and Berea sandstone were used. An iterative numerical technique is used to solve the pressure field and obtain the flow rate and apparent viscosity. The time-independent category is investigated using two fluid models: Ellis and Herschel-Bulkley. The analysis confirmed the reliability of the non-Newtonian network model used in this study. Good results are obtained, especially for the Ellis model, when comparing the network model results to experimental data sets found in the literature. The yield-stress phenomenon is also investigated and several numerical algorithms were developed and implemented to predict threshold yield pressure of the network.Books on Demand GmbH, Überseering 33, 22297 Hamburg 196 pp. Englisch. Nº de ref. del artículo: 9783659951848
Cantidad disponible: 2 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18404342776
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 196 pages. 8.66x5.91x0.45 inches. In Stock. Nº de ref. del artículo: 3659951846
Cantidad disponible: 1 disponibles