EUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Shinde Subhash K.Dr. Subhash K. Shinde is a Professor at Lokmanya Tilak College of Engineering, Navi Mumbai. He completed his Ph.D. ( Computer Engineering) in October 2012 from SRTM,Nanded, India. He is Chairman, B.O.S. in Computer . Nº de ref. del artículo: 385770109
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is to propose an adaptive recommendation model with learning algorithms, which increases web user satisfaction and save on thecosts of content management with minimal human intervention. This researchwork explores a unified model for hybrid filtering with learning algorithms which extracts customer's current browsing patterns and forms group of customersusing different clustering algorithms to obtain implicit users rating forrecommended product. In this research following three novel recommender systems are proposed. These systems are used to investigate issues and challenges related to recommendersystems. Hybrid web personalized recommender system based on web usagemining (HWPRS). Hybrid web personalized recommender system using centeringbunchingbased clustering (CBBCHPRS). Hybrid Fuzzy personalized recommender system using Modified Fuzzyc-means clustering (MFCMHFRS). 140 pp. Englisch. Nº de ref. del artículo: 9783659877759
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book is to propose an adaptive recommendation model with learning algorithms, which increases web user satisfaction and save on thecosts of content management with minimal human intervention. This researchwork explores a unified model for hybrid filtering with learning algorithms which extracts customer's current browsing patterns and forms group of customersusing different clustering algorithms to obtain implicit users rating forrecommended product. In this research following three novel recommender systems are proposed. These systems are used to investigate issues and challenges related to recommendersystems. Hybrid web personalized recommender system based on web usagemining (HWPRS). Hybrid web personalized recommender system using centeringbunchingbased clustering (CBBCHPRS). Hybrid Fuzzy personalized recommender system using Modified Fuzzyc-means clustering (MFCMHFRS). Nº de ref. del artículo: 9783659877759
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -This book is to propose an adaptive recommendation model with learning algorithms, which increases web user satisfaction and save on thecosts of content management with minimal human intervention. This researchwork explores a unified model for hybrid filtering with learning algorithms which extracts customer¿s current browsing patterns and forms group of customersusing different clustering algorithms to obtain implicit users rating forrecommended product. In this research following three novel recommender systems are proposed. These systems are used to investigate issues and challenges related to recommendersystems. ¿ Hybrid web personalized recommender system based on web usagemining (HWPRS). ¿ Hybrid web personalized recommender system using centeringbunchingbased clustering (CBBCHPRS). ¿ Hybrid Fuzzy personalized recommender system using Modified Fuzzyc-means clustering (MFCMHFRS).Books on Demand GmbH, Überseering 33, 22297 Hamburg 140 pp. Englisch. Nº de ref. del artículo: 9783659877759
Cantidad disponible: 2 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 140 pages. 8.66x5.91x0.32 inches. In Stock. Nº de ref. del artículo: 3659877751
Cantidad disponible: 1 disponibles