Artículos relacionados a Evolutionary Multiobjective Optimization with Gaussian...

Evolutionary Multiobjective Optimization with Gaussian Process Models - Tapa blanda

 
9783659759352: Evolutionary Multiobjective Optimization with Gaussian Process Models

Sinopsis

This book focuses on the field of surrogate-model-based multiobjective evolutionary optimization. It describes the sate-of-the-art concepts and methods, presents various optimization problems and describes current challenges. The main contributions are done for the optimization problems, where solutions are presented with uncertainty. To compare solutions under uncertainty and improve the optimization results the new relations for comparing solutions under uncertainty are defined. These relations reduce the possibility of incorrect comparisons due to the inaccurate approximations. The relations under uncertainty are then used in the new surrogate-model-based multiobjective evolutionary algorithm called GP-DEMO. The algorithm is thoroughly tested on benchmark and real-world problems and the results show that GP-DEMO, in comparison to other multiobjective evolutionary algorithms, produces comparable results while requiring fewer exact evaluations of the original objective functions.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

This book focuses on the field of surrogate-model-based multiobjective evolutionary optimization. It describes the sate-of-the-art concepts and methods, presents various optimization problems and describes current challenges. The main contributions are done for the optimization problems, where solutions are presented with uncertainty. To compare solutions under uncertainty and improve the optimization results the new relations for comparing solutions under uncertainty are defined. These relations reduce the possibility of incorrect comparisons due to the inaccurate approximations. The relations under uncertainty are then used in the new surrogate-model-based multiobjective evolutionary algorithm called GP-DEMO. The algorithm is thoroughly tested on benchmark and real-world problems and the results show that GP-DEMO, in comparison to other multiobjective evolutionary algorithms, produces comparable results while requiring fewer exact evaluations of the original objective functions.

Biografía del autor

Miha Mlakar finished his Ph.D. in Information and Communication Technologies from the Jožef Stefan International Postgraduate School in Ljubljana, Slovenia.He is currently working as a Postdoctoral Associate at Jožef Stefan Insitute, focusing on evolutionary algorithms, optimization, machine learning, data science and industrial applications.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialLAP LAMBERT Academic Publishing
  • Año de publicación2015
  • ISBN 10 365975935X
  • ISBN 13 9783659759352
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas116
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Como Nuevo
Like New
Ver este artículo

EUR 29,39 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Evolutionary Multiobjective Optimization with Gaussian...

Imagen del vendedor

Miha Mlakar
ISBN 10: 365975935X ISBN 13: 9783659759352
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on the field of surrogate-model-based multiobjective evolutionary optimization. It describes the sate-of-the-art concepts and methods, presents various optimization problems and describes current challenges. The main contributions are done for the optimization problems, where solutions are presented with uncertainty. To compare solutions under uncertainty and improve the optimization results the new relations for comparing solutions under uncertainty are defined. These relations reduce the possibility of incorrect comparisons due to the inaccurate approximations. The relations under uncertainty are then used in the new surrogate-model-based multiobjective evolutionary algorithm called GP-DEMO. The algorithm is thoroughly tested on benchmark and real-world problems and the results show that GP-DEMO, in comparison to other multiobjective evolutionary algorithms, produces comparable results while requiring fewer exact evaluations of the original objective functions. 116 pp. Englisch. Nº de ref. del artículo: 9783659759352

Contactar al vendedor

Comprar nuevo

EUR 49,90
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Miha Mlakar
Publicado por LAP LAMBERT Academic Publishing, 2015
ISBN 10: 365975935X ISBN 13: 9783659759352
Nuevo Tapa blanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 158247459

Contactar al vendedor

Comprar nuevo

EUR 45,45
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Miha Mlakar
Publicado por LAP LAMBERT Academic Publishing, 2015
ISBN 10: 365975935X ISBN 13: 9783659759352
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book focuses on the field of surrogate-model-based multiobjective evolutionary optimization. It describes the sate-of-the-art concepts and methods, presents various optimization problems and describes current challenges. The main contributions are done for the optimization problems, where solutions are presented with uncertainty. To compare solutions under uncertainty and improve the optimization results the new relations for comparing solutions under uncertainty are defined. These relations reduce the possibility of incorrect comparisons due to the inaccurate approximations. The relations under uncertainty are then used in the new surrogate-model-based multiobjective evolutionary algorithm called GP-DEMO. The algorithm is thoroughly tested on benchmark and real-world problems and the results show that GP-DEMO, in comparison to other multiobjective evolutionary algorithms, produces comparable results while requiring fewer exact evaluations of the original objective functions. Nº de ref. del artículo: 9783659759352

Contactar al vendedor

Comprar nuevo

EUR 54,90
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Miha Mlakar
ISBN 10: 365975935X ISBN 13: 9783659759352
Nuevo Taschenbuch
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book focuses on the field of surrogate-model-based multiobjective evolutionary optimization. It describes the sate-of-the-art concepts and methods, presents various optimization problems and describes current challenges. The main contributions are done for the optimization problems, where solutions are presented with uncertainty. To compare solutions under uncertainty and improve the optimization results the new relations for comparing solutions under uncertainty are defined. These relations reduce the possibility of incorrect comparisons due to the inaccurate approximations. The relations under uncertainty are then used in the new surrogate-model-based multiobjective evolutionary algorithm called GP-DEMO. The algorithm is thoroughly tested on benchmark and real-world problems and the results show that GP-DEMO, in comparison to other multiobjective evolutionary algorithms, produces comparable results while requiring fewer exact evaluations of the original objective functions.Books on Demand GmbH, Überseering 33, 22297 Hamburg 116 pp. Englisch. Nº de ref. del artículo: 9783659759352

Contactar al vendedor

Comprar nuevo

EUR 54,90
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Mlakar, Miha
Publicado por LAP LAMBERT Academic Publishing, 2015
ISBN 10: 365975935X ISBN 13: 9783659759352
Antiguo o usado paperback

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA800365975935X6

Contactar al vendedor

Comprar usado

EUR 116,24
Convertir moneda
Gastos de envío: EUR 29,39
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito