The nonlinear and unsteady nature of aircraft aerodynamics and limited range of controls and states make the use of linear control theory inadequate. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicle's control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of perturbances. The flight control system developed achieves the above performance by using a nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory; a formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling; an artificial neural network, designed to adaptively estimate aerodynamic and propulsive forces; a mixed sensitivity approach that enhances the robustness for an adaptive nonlinear model predictive controller.
He received in 1994 his BS from the Chilean Naval Polytechnic Academy, in 2006 a MS from Federico Santa Maria University, both in electronic engineering, and his PhD in aerospace engineering from the University of Kansas, in 2013. He is a postdoc at the University of Kansas, working in nonlinear robust control for autonomous vehicles.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 23,00 gastos de envío desde Alemania a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The nonlinear and unsteady nature of aircraft aerodynamics and limited range of controls and states make the use of linear control theory inadequate. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicle's control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of perturbances. The flight control system developed achieves the above performance by using a nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory; a formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling; an artificial neural network, designed to adaptively estimate aerodynamic and propulsive forces; a mixed sensitivity approach that enhances the robustness for an adaptive nonlinear model predictive controller. 168 pp. Englisch. Nº de ref. del artículo: 9783659554056
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The nonlinear and unsteady nature of aircraft aerodynamics and limited range of controls and states make the use of linear control theory inadequate. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicle's control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of perturbances. The flight control system developed achieves the above performance by using a nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory; a formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling; an artificial neural network, designed to adaptively estimate aerodynamic and propulsive forces; a mixed sensitivity approach that enhances the robustness for an adaptive nonlinear model predictive controller. Nº de ref. del artículo: 9783659554056
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Garcia GonzaloHe received in 1994 his BS from the Chilean Naval Polytechnic Academy, in 2006 a MS from Federico Santa Maria University, both in electronic engineering, and his PhD in aerospace engineering from the University of Kansa. Nº de ref. del artículo: 5164451
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 168. Nº de ref. del artículo: 26128182966
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 168 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Nº de ref. del artículo: 131356009
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 168. Nº de ref. del artículo: 18128182972
Cantidad disponible: 4 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
paperback. Condición: New. New. book. Nº de ref. del artículo: ERICA82936595540576
Cantidad disponible: 1 disponibles