Artículos relacionados a Vedic Mathematics for Binary Applications

Vedic Mathematics for Binary Applications - Tapa blanda

 
9783659543302: Vedic Mathematics for Binary Applications

Sinopsis

Conventional 24x24 multiply architectures are implemented in floating point multipliers using array multipliers, redundant binary architectures( Pipeline Stages), modified booth encoding, a binary tree of 4:2 Compressors (Wallace tree) and modified carry save array in conjunction with Booth's algorithm. There are number of problems associated with tree and array multipliers. Tree multipliers have many problems like shortest logic delay but irregular layouts with complicated interconnects, irregular layouts not only demand more physical design effort, but also introduce significant interconnect delay. Similarly, array multipliers has also some drawbacks associated with them such as they have larger delay and offer regular layout with simpler interconnects. Also significant amount of power consumption as reconfigurability at run time is not provided according to the input bit width. In order to remove the above problems, Urdhvatriyakbhyam algorithm of ancient Indian Vedic Mathematics is utilized. Simulation of 32-bit Floating Point Multiplier and application of Vedic Mathematics is an important part of this dissertation.

"Sinopsis" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 23,00 gastos de envío desde Alemania a Estados Unidos de America

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Vedic Mathematics for Binary Applications

Imagen del vendedor

Abhijeet Kumar
ISBN 10: 3659543306 ISBN 13: 9783659543302
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Conventional 24x24 multiply architectures are implemented in floating point multipliers using array multipliers, redundant binary architectures( Pipeline Stages), modified booth encoding, a binary tree of 4:2 Compressors (Wallace tree) and modified carry save array in conjunction with Booth's algorithm. There are number of problems associated with tree and array multipliers. Tree multipliers have many problems like shortest logic delay but irregular layouts with complicated interconnects, irregular layouts not only demand more physical design effort, but also introduce significant interconnect delay. Similarly, array multipliers has also some drawbacks associated with them such as they have larger delay and offer regular layout with simpler interconnects. Also significant amount of power consumption as reconfigurability at run time is not provided according to the input bit width. In order to remove the above problems, Urdhvatriyakbhyam algorithm of ancient Indian Vedic Mathematics is utilized. Simulation of 32-bit Floating Point Multiplier and application of Vedic Mathematics is an important part of this dissertation. 52 pp. Englisch. Nº de ref. del artículo: 9783659543302

Contactar al vendedor

Comprar nuevo

EUR 39,90
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Abhijeet Kumar|Siddhi Misha
Publicado por LAP LAMBERT Academic Publishing, 2018
ISBN 10: 3659543306 ISBN 13: 9783659543302
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kumar AbhijeetAbhijeet Kumar - Assistant Professor, M M University, Mullana, AmbalaM.E, Punjab Engineering College, Chandigarh, B.E, SLIET, Longowal.Conventional 24x24 multiply architectures are implemented in floating point mult. Nº de ref. del artículo: 251967527

Contactar al vendedor

Comprar nuevo

EUR 34,25
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Abhijeet Kumar
Publicado por LAP LAMBERT Academic Publishing, 2018
ISBN 10: 3659543306 ISBN 13: 9783659543302
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 52 pages. 8.66x5.91x0.12 inches. In Stock. Nº de ref. del artículo: 3659543306

Contactar al vendedor

Comprar nuevo

EUR 70,81
Convertir moneda
Gastos de envío: EUR 28,73
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Abhijeet Kumar
ISBN 10: 3659543306 ISBN 13: 9783659543302
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Conventional 24x24 multiply architectures are implemented in floating point multipliers using array multipliers, redundant binary architectures( Pipeline Stages), modified booth encoding, a binary tree of 4:2 Compressors (Wallace tree) and modified carry save array in conjunction with Booth's algorithm. There are number of problems associated with tree and array multipliers. Tree multipliers have many problems like shortest logic delay but irregular layouts with complicated interconnects, irregular layouts not only demand more physical design effort, but also introduce significant interconnect delay. Similarly, array multipliers has also some drawbacks associated with them such as they have larger delay and offer regular layout with simpler interconnects. Also significant amount of power consumption as reconfigurability at run time is not provided according to the input bit width. In order to remove the above problems, Urdhvatriyakbhyam algorithm of ancient Indian Vedic Mathematics is utilized. Simulation of 32-bit Floating Point Multiplier and application of Vedic Mathematics is an important part of this dissertation.Books on Demand GmbH, Überseering 33, 22297 Hamburg 52 pp. Englisch. Nº de ref. del artículo: 9783659543302

Contactar al vendedor

Comprar nuevo

EUR 39,90
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Abhijeet Kumar
Publicado por LAP LAMBERT Academic Publishing, 2018
ISBN 10: 3659543306 ISBN 13: 9783659543302
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Conventional 24x24 multiply architectures are implemented in floating point multipliers using array multipliers, redundant binary architectures( Pipeline Stages), modified booth encoding, a binary tree of 4:2 Compressors (Wallace tree) and modified carry save array in conjunction with Booth's algorithm. There are number of problems associated with tree and array multipliers. Tree multipliers have many problems like shortest logic delay but irregular layouts with complicated interconnects, irregular layouts not only demand more physical design effort, but also introduce significant interconnect delay. Similarly, array multipliers has also some drawbacks associated with them such as they have larger delay and offer regular layout with simpler interconnects. Also significant amount of power consumption as reconfigurability at run time is not provided according to the input bit width. In order to remove the above problems, Urdhvatriyakbhyam algorithm of ancient Indian Vedic Mathematics is utilized. Simulation of 32-bit Floating Point Multiplier and application of Vedic Mathematics is an important part of this dissertation. Nº de ref. del artículo: 9783659543302

Contactar al vendedor

Comprar nuevo

EUR 39,90
Convertir moneda
Gastos de envío: EUR 60,48
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito