In present work advancement in replication techniques for a biomedical component having a real 3D shape has been introduced. A hip joint was selected as one of a real 3D biomedical implant for this study. A hip joint, made of ABS material, was fabricated as a master pattern by fused deposition modelling (FDM) method. After this mold was made by the deposition of Primary, Secondary and Tertiary coatings with the addition of (1- 2cm in length) nylon fiber of 1.5D as per the Taguchi L9 control log of experimentation.This study outlines complete replication procedure of hip joint in detail from the master pattern to a final product with some investigation on mechanical and metallurgical properties. The results of study highlights that during shell production, fiber modified shells had a much reduced drain time. This gave a higher ceramic retention rate after dipping and led to a thicker coat compared to that produced without fiber addition.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dr. Rupinder Singh is Professor in Production Engineering at Guru Nanak Dev Engineering College, Ludhiana. He has published more than 200 research papers in area of manufacturing engineering. Er. Vishal Mahajan is M.Tech research scholar in Dept. of Production Engineering. His area of interest is metal casting.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In present work advancement in replication techniques for a biomedical component having a real 3D shape has been introduced. A hip joint was selected as one of a real 3D biomedical implant for this study. A hip joint, made of ABS material, was fabricated as a master pattern by fused deposition modelling (FDM) method. After this mold was made by the deposition of Primary, Secondary and Tertiary coatings with the addition of (1- 2cm in length) nylon fiber of 1.5D as per the Taguchi L9 control log of experimentation.This study outlines complete replication procedure of hip joint in detail from the master pattern to a final product with some investigation on mechanical and metallurgical properties. The results of study highlights that during shell production, fiber modified shells had a much reduced drain time. This gave a higher ceramic retention rate after dipping and led to a thicker coat compared to that produced without fiber addition. 76 pp. Englisch. Nº de ref. del artículo: 9783659432088
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Singh RupinderDr. Rupinder Singh is Professor in Production Engineering at Guru Nanak Dev Engineering College, Ludhiana. He has published more than 200 research papers in area of manufacturing engineering. Er. Vishal Mahajan is M.Tec. Nº de ref. del artículo: 5155858
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -In present work advancement in replication techniques for a biomedical component having a real 3D shape has been introduced. A hip joint was selected as one of a real 3D biomedical implant for this study. A hip joint, made of ABS material, was fabricated as a master pattern by fused deposition modelling (FDM) method. After this mold was made by the deposition of Primary, Secondary and Tertiary coatings with the addition of (1- 2cm in length) nylon fiber of 1.5D as per the Taguchi L9 control log of experimentation.This study outlines complete replication procedure of hip joint in detail from the master pattern to a final product with some investigation on mechanical and metallurgical properties. The results of study highlights that during shell production, fiber modified shells had a much reduced drain time. This gave a higher ceramic retention rate after dipping and led to a thicker coat compared to that produced without fiber addition.Books on Demand GmbH, Überseering 33, 22297 Hamburg 76 pp. Englisch. Nº de ref. del artículo: 9783659432088
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In present work advancement in replication techniques for a biomedical component having a real 3D shape has been introduced. A hip joint was selected as one of a real 3D biomedical implant for this study. A hip joint, made of ABS material, was fabricated as a master pattern by fused deposition modelling (FDM) method. After this mold was made by the deposition of Primary, Secondary and Tertiary coatings with the addition of (1- 2cm in length) nylon fiber of 1.5D as per the Taguchi L9 control log of experimentation.This study outlines complete replication procedure of hip joint in detail from the master pattern to a final product with some investigation on mechanical and metallurgical properties. The results of study highlights that during shell production, fiber modified shells had a much reduced drain time. This gave a higher ceramic retention rate after dipping and led to a thicker coat compared to that produced without fiber addition. Nº de ref. del artículo: 9783659432088
Cantidad disponible: 1 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Reduction in cycle time of investment casting process | by advancements in shell moulding | Rupinder Singh (u. a.) | Taschenbuch | 76 S. | Englisch | 2013 | LAP LAMBERT Academic Publishing | EAN 9783659432088 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Nº de ref. del artículo: 105722143
Cantidad disponible: 5 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Nº de ref. del artículo: ERICA79736594320836
Cantidad disponible: 1 disponibles