In this book, we studied the model selection and its parameter estimation through Bayesian techniques, In Applied Decision Theory, usually we consider Bayesian Analysis and Estimation Theory, a Bayes Estimator is an estimator or decision rule that maximizes the posterior expected value of a utility function or minimizes the posterior expected value of a loss function. The Bayesian Estimation of parameter in the case of Shift or Change Point in Poisson Sequence, Gamma Sequence and in Pareto Sequence under Squared Error Loss Function(SELF), LINEX Loss Function(LLF) and Precautionary Loss Function(PLF) and General Entropy Loss Function(GELF) was carried out and the comparisons are made among the different loss functions in the Poisson Sequence and Pareto Sequence within. The observed data like life time data, economic data, industrial data etc; can be consider in which there may be a sudden change or failure in life test will occur, It is very important to know when and where a change will occur and the Bayesian estimation of its parameter will be calculated and the inference will be drawn which is very important to take decision regarding the shift point in the life testing models.
"Sinopsis" puede pertenecer a otra edición de este libro.
In this book, we studied the model selection and its parameter estimation through Bayesian techniques, In Applied Decision Theory, usually we consider Bayesian Analysis and Estimation Theory, a Bayes Estimator is an estimator or decision rule that maximizes the posterior expected value of a utility function or minimizes the posterior expected value of a loss function. The Bayesian Estimation of parameter in the case of Shift or Change Point in Poisson Sequence, Gamma Sequence and in Pareto Sequence under Squared Error Loss Function(SELF), LINEX Loss Function(LLF) and Precautionary Loss Function(PLF) and General Entropy Loss Function(GELF) was carried out and the comparisons are made among the different loss functions in the Poisson Sequence and Pareto Sequence within. The observed data like life time data, economic data, industrial data etc; can be consider in which there may be a sudden change or failure in life test will occur, It is very important to know when and where a change will occur and the Bayesian estimation of its parameter will be calculated and the inference will be drawn which is very important to take decision regarding the shift point in the life testing models.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this book, we studied the model selection and its parameter estimation through Bayesian techniques, In Applied Decision Theory, usually we consider Bayesian Analysis and Estimation Theory, a Bayes Estimator is an estimator or decision rule that maximizes the posterior expected value of a utility function or minimizes the posterior expected value of a loss function. The Bayesian Estimation of parameter in the case of Shift or Change Point in Poisson Sequence, Gamma Sequence and in Pareto Sequence under Squared Error Loss Function(SELF), LINEX Loss Function(LLF) and Precautionary Loss Function(PLF) and General Entropy Loss Function(GELF) was carried out and the comparisons are made among the different loss functions in the Poisson Sequence and Pareto Sequence within. The observed data like life time data, economic data, industrial data etc; can be consider in which there may be a sudden change or failure in life test will occur, It is very important to know when and where a change will occur and the Bayesian estimation of its parameter will be calculated and the inference will be drawn which is very important to take decision regarding the shift point in the life testing models. 148 pp. Englisch. Nº de ref. del artículo: 9783659431593
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Mishra Manoj KumarAuthor was born on 15 March 1973 at Padrauna, District Kushinagar in Uttar Pradesh, a state of India. He did his M.Sc. with major in Agril. Statistics and minor in Computer Sc. from G. B. Pant University of Agricult. Nº de ref. del artículo: 21942045
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In this book, we studied the model selection and its parameter estimation through Bayesian techniques, In Applied Decision Theory, usually we consider Bayesian Analysis and Estimation Theory, a Bayes Estimator is an estimator or decision rule that maximizes the posterior expected value of a utility function or minimizes the posterior expected value of a loss function. The Bayesian Estimation of parameter in the case of Shift or Change Point in Poisson Sequence, Gamma Sequence and in Pareto Sequence under Squared Error Loss Function(SELF), LINEX Loss Function(LLF) and Precautionary Loss Function(PLF) and General Entropy Loss Function(GELF) was carried out and the comparisons are made among the different loss functions in the Poisson Sequence and Pareto Sequence within. The observed data like life time data, economic data, industrial data etc; can be consider in which there may be a sudden change or failure in life test will occur, It is very important to know when and where a change will occur and the Bayesian estimation of its parameter will be calculated and the inference will be drawn which is very important to take decision regarding the shift point in the life testing models.Books on Demand GmbH, Überseering 33, 22297 Hamburg 148 pp. Englisch. Nº de ref. del artículo: 9783659431593
Cantidad disponible: 1 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Applied Decision Theory: Estimation of Models using Bayesian Approach | Bayesian Estimation of Shift or Change Point in Different Statistical Data Sequences under Various Loss Functions | Manoj Kumar Mishra | Taschenbuch | 148 S. | Englisch | 2015 | LAP LAMBERT Academic Publishing | EAN 9783659431593 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Nº de ref. del artículo: 104759376
Cantidad disponible: 5 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In this book, we studied the model selection and its parameter estimation through Bayesian techniques, In Applied Decision Theory, usually we consider Bayesian Analysis and Estimation Theory, a Bayes Estimator is an estimator or decision rule that maximizes the posterior expected value of a utility function or minimizes the posterior expected value of a loss function. The Bayesian Estimation of parameter in the case of Shift or Change Point in Poisson Sequence, Gamma Sequence and in Pareto Sequence under Squared Error Loss Function(SELF), LINEX Loss Function(LLF) and Precautionary Loss Function(PLF) and General Entropy Loss Function(GELF) was carried out and the comparisons are made among the different loss functions in the Poisson Sequence and Pareto Sequence within. The observed data like life time data, economic data, industrial data etc; can be consider in which there may be a sudden change or failure in life test will occur, It is very important to know when and where a change will occur and the Bayesian estimation of its parameter will be calculated and the inference will be drawn which is very important to take decision regarding the shift point in the life testing models. Nº de ref. del artículo: 9783659431593
Cantidad disponible: 1 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Nº de ref. del artículo: ERICA79036594315916
Cantidad disponible: 1 disponibles