The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) domain presents a challenging problem due to presence of spatial and temporal aspects inherent in the EEG data. Many studies either transform the data into a temporal or spatial problem for analysis. This approach results in loss of significant information since these methods fail to consider the correlation present within the spatial and temporal aspect of the EEG data. However, Spiking Neural Network (SNN) naturally takes into consideration the correlation present within the spatio-temporal data. Hence by applying the proposed SNN based novel methods on EEG, the thesis provide improved analytic on EEG data. This book introduces novel methods and architectures for spatio-temporal data modelling and classification using SNN. More specifically, SNN is used for analysis and classification of spatiotemporal EEG data.
"Sinopsis" puede pertenecer a otra edición de este libro.
The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) domain presents a challenging problem due to presence of spatial and temporal aspects inherent in the EEG data. Many studies either transform the data into a temporal or spatial problem for analysis. This approach results in loss of significant information since these methods fail to consider the correlation present within the spatial and temporal aspect of the EEG data. However, Spiking Neural Network (SNN) naturally takes into consideration the correlation present within the spatio-temporal data. Hence by applying the proposed SNN based novel methods on EEG, the thesis provide improved analytic on EEG data. This book introduces novel methods and architectures for spatio-temporal data modelling and classification using SNN. More specifically, SNN is used for analysis and classification of spatiotemporal EEG data.
Nuttapod graduated a M.Sc. in Computer Science from King Mongkut’s Institute of Technology,Thailand with outstanding thesis award. He completed a PhD in Computer and Information Science from Auckland University of Technology, New Zealand under the supervision of Prof. Nikola Kasabov and Assoc. Prof. Petia Georgieva.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 4,03 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783659430800
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783659430800_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783659430800
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 5155785
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783659430800
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) domain presents a challenging problem due to presence of spatial and temporal aspects inherent in the EEG data. Many studies either transform the data into a temporal or spatial problem for analysis. This approach results in loss of significant information since these methods fail to consider the correlation present within the spatial and temporal aspect of the EEG data. However, Spiking Neural Network (SNN) naturally takes into consideration the correlation present within the spatio-temporal data. Hence by applying the proposed SNN based novel methods on EEG, the thesis provide improved analytic on EEG data. This book introduces novel methods and architectures for spatio-temporal data modelling and classification using SNN. More specifically, SNN is used for analysis and classification of spatiotemporal EEG data. 256 pp. Englisch. Nº de ref. del artículo: 9783659430800
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) domain presents a challenging problem due to presence of spatial and temporal aspects inherent in the EEG data. Many studies either transform the data into a temporal or spatial problem for analysis. This approach results in loss of significant information since these methods fail to consider the correlation present within the spatial and temporal aspect of the EEG data. However, Spiking Neural Network (SNN) naturally takes into consideration the correlation present within the spatio-temporal data. Hence by applying the proposed SNN based novel methods on EEG, the thesis provide improved analytic on EEG data. This book introduces novel methods and architectures for spatio-temporal data modelling and classification using SNN. More specifically, SNN is used for analysis and classification of spatiotemporal EEG data. Nº de ref. del artículo: 9783659430800
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) domain presents a challenging problem due to presence of spatial and temporal aspects inherent in the EEG data. Many studies either transform the data into a temporal or spatial problem for analysis. This approach results in loss of significant information since these methods fail to consider the correlation present within the spatial and temporal aspect of the EEG data. However, Spiking Neural Network (SNN) naturally takes into consideration the correlation present within the spatio-temporal data. Hence by applying the proposed SNN based novel methods on EEG, the thesis provide improved analytic on EEG data. This book introduces novel methods and architectures for spatio-temporal data modelling and classification using SNN. More specifically, SNN is used for analysis and classification of spatiotemporal EEG data.Books on Demand GmbH, Überseering 33, 22297 Hamburg 256 pp. Englisch. Nº de ref. del artículo: 9783659430800
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020285716
Cantidad disponible: Más de 20 disponibles