We present a real-time, physically based simulation method for animating high-resolution elastic deformations with a focus on haptic interaction. To achieve interactive rates without losing accuracy, the reduced material stiffness matrix is precomputed by removing the equations that correspond to the internal nodes of the system. In addition, we employ linear modal analysis to precompute the natural vibration modes of the system. We introduce a deformation-coupling technique in order to achieve the reduced dynamic behaviour while keeping the high-resolution local deformations. To explore the implications of the coupling system, we describe different integration techniques to time-step the reduced dynamic solution in addition to evaluating the force feedback. Moreover, we show how we handle multiple contact points for non-sticky materials. To improve the contact-handling procedure, we employ our sliding technique to include friction. We compare our proposed method to the previously existing techniques in terms of run-time complexity and deformation properties using 3D meshes embedded in finite elements.
"Sinopsis" puede pertenecer a otra edición de este libro.
We present a real-time, physically based simulation method for animating high-resolution elastic deformations with a focus on haptic interaction. To achieve interactive rates without losing accuracy, the reduced material stiffness matrix is precomputed by removing the equations that correspond to the internal nodes of the system. In addition, we employ linear modal analysis to precompute the natural vibration modes of the system. We introduce a deformation-coupling technique in order to achieve the reduced dynamic behaviour while keeping the high-resolution local deformations. To explore the implications of the coupling system, we describe different integration techniques to time-step the reduced dynamic solution in addition to evaluating the force feedback. Moreover, we show how we handle multiple contact points for non-sticky materials. To improve the contact-handling procedure, we employ our sliding technique to include friction. We compare our proposed method to the previously existing techniques in terms of run-time complexity and deformation properties using 3D meshes embedded in finite elements.
Yas grew up in Iran where she obtained a B.Sc. in Computer Engineering from University of Tehran. She moved to Montreal in 2009, where she obtained her M.Sc. from McGill University. Her research area was Computer Graphics and physically based animation. She joined Morgan Stanley in 2012 where she now works as a technology associate.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -We present a real-time, physically based simulation method for animating high-resolution elastic deformations with a focus on haptic interaction. To achieve interactive rates without losing accuracy, the reduced material stiffness matrix is precomputed by removing the equations that correspond to the internal nodes of the system. In addition, we employ linear modal analysis to precompute the natural vibration modes of the system. We introduce a deformation-coupling technique in order to achieve the reduced dynamic behaviour while keeping the high-resolution local deformations. To explore the implications of the coupling system, we describe different integration techniques to time-step the reduced dynamic solution in addition to evaluating the force feedback. Moreover, we show how we handle multiple contact points for non-sticky materials. To improve the contact-handling procedure, we employ our sliding technique to include friction. We compare our proposed method to the previously existing techniques in terms of run-time complexity and deformation properties using 3D meshes embedded in finite elements. 72 pp. Englisch. Nº de ref. del artículo: 9783659398773
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 72. Nº de ref. del artículo: 26128802274
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 72 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Nº de ref. del artículo: 131785277
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 72. Nº de ref. del artículo: 18128802280
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Sedaghat YasamanYas grew up in Iran where she obtained a B.Sc. in Computer Engineering from University of Tehran. She moved to Montreal in 2009, where she obtained her M.Sc. from McGill University. Her research area was Computer Grap. Nº de ref. del artículo: 5153666
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -We present a real-time, physically based simulation method for animating high-resolution elastic deformations with a focus on haptic interaction. To achieve interactive rates without losing accuracy, the reduced material stiffness matrix is precomputed by removing the equations that correspond to the internal nodes of the system. In addition, we employ linear modal analysis to precompute the natural vibration modes of the system. We introduce a deformation-coupling technique in order to achieve the reduced dynamic behaviour while keeping the high-resolution local deformations. To explore the implications of the coupling system, we describe different integration techniques to time-step the reduced dynamic solution in addition to evaluating the force feedback. Moreover, we show how we handle multiple contact points for non-sticky materials. To improve the contact-handling procedure, we employ our sliding technique to include friction. We compare our proposed method to the previously existing techniques in terms of run-time complexity and deformation properties using 3D meshes embedded in finite elements.Books on Demand GmbH, Überseering 33, 22297 Hamburg 72 pp. Englisch. Nº de ref. del artículo: 9783659398773
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - We present a real-time, physically based simulation method for animating high-resolution elastic deformations with a focus on haptic interaction. To achieve interactive rates without losing accuracy, the reduced material stiffness matrix is precomputed by removing the equations that correspond to the internal nodes of the system. In addition, we employ linear modal analysis to precompute the natural vibration modes of the system. We introduce a deformation-coupling technique in order to achieve the reduced dynamic behaviour while keeping the high-resolution local deformations. To explore the implications of the coupling system, we describe different integration techniques to time-step the reduced dynamic solution in addition to evaluating the force feedback. Moreover, we show how we handle multiple contact points for non-sticky materials. To improve the contact-handling procedure, we employ our sliding technique to include friction. We compare our proposed method to the previously existing techniques in terms of run-time complexity and deformation properties using 3D meshes embedded in finite elements. Nº de ref. del artículo: 9783659398773
Cantidad disponible: 1 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Combined static-dynamic deformations with haptic rendering | Yasaman Sedaghat | Taschenbuch | 72 S. | Englisch | 2013 | LAP LAMBERT Academic Publishing | EAN 9783659398773 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Nº de ref. del artículo: 105925128
Cantidad disponible: 5 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Nº de ref. del artículo: ERICA75836593987726
Cantidad disponible: 1 disponibles