Artículos relacionados a Non-Linear Time Series Models: Parametric Estimation...

Non-Linear Time Series Models: Parametric Estimation Using Estimating Functions - Tapa blanda

 
9783659302015: Non-Linear Time Series Models: Parametric Estimation Using Estimating Functions

Sinopsis

In contrast to the traditional time series analysis, which focuses on the modeling based on the first two moments, the nonlinear GARCH models specifically take the effect of the higher moments into modeling consideration. This helps to explain and model volatility especially in financial time series. The GARCH models are able to capture financial characteristics such as volatility clustering, heavy tails and asymmetry. In much of the literature available for the GARCH models, the methods of estimating parameters include the MLE,GMM and LSE which have distributional and optimality limitations. In this book, the Optimal Estimating Function(EF) based techniques are derived for the GARCH models. The EF incorporate the Skewness and the Kurtosis moments which are common in financial data. It is shown using simulations that the Estimating Function (EF) method competes reasonably well with the MLE method especially for the non-normal data and hence provides an alternative estimation technique.Financial analysts, Econometricians and Time series scholars will find this book important in teaching and in risk computation.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

In contrast to the traditional time series analysis, which focuses on the modeling based on the first two moments, the nonlinear GARCH models specifically take the effect of the higher moments into modeling consideration. This helps to explain and model volatility especially in financial time series. The GARCH models are able to capture financial characteristics such as volatility clustering, heavy tails and asymmetry. In much of the literature available for the GARCH models, the methods of estimating parameters include the MLE,GMM and LSE which have distributional and optimality limitations. In this book, the Optimal Estimating Function(EF) based techniques are derived for the GARCH models. The EF incorporate the Skewness and the Kurtosis moments which are common in financial data. It is shown using simulations that the Estimating Function (EF) method competes reasonably well with the MLE method especially for the non-normal data and hence provides an alternative estimation technique.Financial analysts, Econometricians and Time series scholars will find this book important in teaching and in risk computation.

Biografía del autor

Dr. Jesse Mwangi Lectures at Egerton University, Mathematics Dept., Kenya. His research interests are in Time series analysis and Sample surveys.He has authored articles in peer reviewed journals and has co-authored a book 'statistical methods for informational analysis(An introduction)'.He has many years of teaching experience at University level.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Like New
Ver este artículo

EUR 28,76 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Non-Linear Time Series Models: Parametric Estimation...

Imagen del vendedor

Jesse Mwangi
Publicado por LAP LAMBERT Academic Publishing, 2012
ISBN 10: 3659302015 ISBN 13: 9783659302015
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Mwangi JesseDr. Jesse Mwangi Lectures at Egerton University, Mathematics Dept., Kenya. His research interests are in Time series analysis and Sample surveys.He has authored articles in peer reviewed journals and has co-authored a boo. Nº de ref. del artículo: 5146950

Contactar al vendedor

Comprar nuevo

EUR 48,50
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Jesse Mwangi
ISBN 10: 3659302015 ISBN 13: 9783659302015
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In contrast to the traditional time series analysis, which focuses on the modeling based on the first two moments, the nonlinear GARCH models specifically take the effect of the higher moments into modeling consideration. This helps to explain and model volatility especially in financial time series. The GARCH models are able to capture financial characteristics such as volatility clustering, heavy tails and asymmetry. In much of the literature available for the GARCH models, the methods of estimating parameters include the MLE,GMM and LSE which have distributional and optimality limitations. In this book, the Optimal Estimating Function(EF) based techniques are derived for the GARCH models. The EF incorporate the Skewness and the Kurtosis moments which are common in financial data. It is shown using simulations that the Estimating Function (EF) method competes reasonably well with the MLE method especially for the non-normal data and hence provides an alternative estimation technique.Financial analysts, Econometricians and Time series scholars will find this book important in teaching and in risk computation. 120 pp. Englisch. Nº de ref. del artículo: 9783659302015

Contactar al vendedor

Comprar nuevo

EUR 59,00
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Jesse Mwangi
Publicado por LAP LAMBERT Academic Publishing, 2012
ISBN 10: 3659302015 ISBN 13: 9783659302015
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In contrast to the traditional time series analysis, which focuses on the modeling based on the first two moments, the nonlinear GARCH models specifically take the effect of the higher moments into modeling consideration. This helps to explain and model volatility especially in financial time series. The GARCH models are able to capture financial characteristics such as volatility clustering, heavy tails and asymmetry. In much of the literature available for the GARCH models, the methods of estimating parameters include the MLE,GMM and LSE which have distributional and optimality limitations. In this book, the Optimal Estimating Function(EF) based techniques are derived for the GARCH models. The EF incorporate the Skewness and the Kurtosis moments which are common in financial data. It is shown using simulations that the Estimating Function (EF) method competes reasonably well with the MLE method especially for the non-normal data and hence provides an alternative estimation technique.Financial analysts, Econometricians and Time series scholars will find this book important in teaching and in risk computation. Nº de ref. del artículo: 9783659302015

Contactar al vendedor

Comprar nuevo

EUR 59,00
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Mwangi, Jesse
ISBN 10: 3659302015 ISBN 13: 9783659302015
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 120. Nº de ref. del artículo: 26128832219

Contactar al vendedor

Comprar nuevo

EUR 80,01
Convertir moneda
Gastos de envío: EUR 9,89
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Mwangi, Jesse
ISBN 10: 3659302015 ISBN 13: 9783659302015
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand pp. 120 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Nº de ref. del artículo: 131755268

Contactar al vendedor

Comprar nuevo

EUR 82,25
Convertir moneda
Gastos de envío: EUR 10,18
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

Jesse Mwangi
ISBN 10: 3659302015 ISBN 13: 9783659302015
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -In contrast to the traditional time series analysis, which focuses on the modeling based on the first two moments, the nonlinear GARCH models specifically take the effect of the higher moments into modeling consideration. This helps to explain and model volatility especially in financial time series. The GARCH models are able to capture financial characteristics such as volatility clustering, heavy tails and asymmetry. In much of the literature available for the GARCH models, the methods of estimating parameters include the MLE,GMM and LSE which have distributional and optimality limitations. In this book, the Optimal Estimating Function(EF) based techniques are derived for the GARCH models. The EF incorporate the Skewness and the Kurtosis moments which are common in financial data. It is shown using simulations that the Estimating Function (EF) method competes reasonably well with the MLE method especially for the non-normal data and hence provides an alternative estimation technique.Financial analysts, Econometricians and Time series scholars will find this book important in teaching and in risk computation.Books on Demand GmbH, Überseering 33, 22297 Hamburg 120 pp. Englisch. Nº de ref. del artículo: 9783659302015

Contactar al vendedor

Comprar nuevo

EUR 59,00
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Mwangi, Jesse
ISBN 10: 3659302015 ISBN 13: 9783659302015
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND pp. 120. Nº de ref. del artículo: 18128832209

Contactar al vendedor

Comprar nuevo

EUR 84,75
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Mwangi, Jesse
Publicado por LAP LAMBERT Academic Publishing, 2012
ISBN 10: 3659302015 ISBN 13: 9783659302015
Antiguo o usado Paperback

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA79636593020156

Contactar al vendedor

Comprar usado

EUR 119,67
Convertir moneda
Gastos de envío: EUR 28,76
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito