The learning capabilities of artificial neural networks (ANNs) to identify and emulate the behavior of complicated nonlinear systems have made them effective tools that can be utilized in intelligent adaptive control strategies. The use of ANNs in the design of trajectory tracking controllers for robotic manipulators is dated back to the 1980s. Due to the flexibility of their structure as well as the continuous development and enhancement of their self-training algorithms, the use of ANNs in the field of robotic manipulator trajectory tracking control is being considered an important research area. This textbook explains in great detail the process of designing an effective controller to enhance the trajectory tracking performance of a two degree of freedom (2-DOF) robotic arm using neural networks. Feed-forward ANNs were used in both model-based and non-model-based control strategies. Since it also includes a deep explanation of the modeling of the 2-DOF robotic arm system including its actuating DC-motors and their control using a PD controller, this textbook can also serve as an effective educational tool for both undergraduate and graduate electrical engineering students.
"Sinopsis" puede pertenecer a otra edición de este libro.
The learning capabilities of artificial neural networks (ANNs) to identify and emulate the behavior of complicated nonlinear systems have made them effective tools that can be utilized in intelligent adaptive control strategies. The use of ANNs in the design of trajectory tracking controllers for robotic manipulators is dated back to the 1980s. Due to the flexibility of their structure as well as the continuous development and enhancement of their self-training algorithms, the use of ANNs in the field of robotic manipulator trajectory tracking control is being considered an important research area. This textbook explains in great detail the process of designing an effective controller to enhance the trajectory tracking performance of a two degree of freedom (2-DOF) robotic arm using neural networks. Feed-forward ANNs were used in both model-based and non-model-based control strategies. Since it also includes a deep explanation of the modeling of the 2-DOF robotic arm system including its actuating DC-motors and their control using a PD controller, this textbook can also serve as an effective educational tool for both undergraduate and graduate electrical engineering students.
Mahmoud M. Al Ashi, MSc. Had my BEng degree in Telecommunications from City University London in 2007. My MSc degree in Electrical Engineering was obtained from the Islamic University of Gaza in 2014. My research interests include robotic manipulator control using neural networks, Nonlinear system modeling and control, and optimization methods.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The learning capabilities of artificial neural networks (ANNs) to identify and emulate the behavior of complicated nonlinear systems have made them effective tools that can be utilized in intelligent adaptive control strategies. The use of ANNs in the design of trajectory tracking controllers for robotic manipulators is dated back to the 1980s. Due to the flexibility of their structure as well as the continuous development and enhancement of their self-training algorithms, the use of ANNs in the field of robotic manipulator trajectory tracking control is being considered an important research area. This textbook explains in great detail the process of designing an effective controller to enhance the trajectory tracking performance of a two degree of freedom (2-DOF) robotic arm using neural networks. Feed-forward ANNs were used in both model-based and non-model-based control strategies. Since it also includes a deep explanation of the modeling of the 2-DOF robotic arm system including its actuating DC-motors and their control using a PD controller, this textbook can also serve as an effective educational tool for both undergraduate and graduate electrical engineering students. 100 pp. Englisch. Nº de ref. del artículo: 9783659289682
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Al Ashi MahmoudMahmoud M. Al Ashi, MSc. Had my BEng degree in Telecommunications from City University London in 2007. My MSc degree in Electrical Engineering was obtained from the Islamic University of Gaza in 2014. My research inter. Nº de ref. del artículo: 5146034
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The learning capabilities of artificial neural networks (ANNs) to identify and emulate the behavior of complicated nonlinear systems have made them effective tools that can be utilized in intelligent adaptive control strategies. The use of ANNs in the design of trajectory tracking controllers for robotic manipulators is dated back to the 1980s. Due to the flexibility of their structure as well as the continuous development and enhancement of their self-training algorithms, the use of ANNs in the field of robotic manipulator trajectory tracking control is being considered an important research area. This textbook explains in great detail the process of designing an effective controller to enhance the trajectory tracking performance of a two degree of freedom (2-DOF) robotic arm using neural networks. Feed-forward ANNs were used in both model-based and non-model-based control strategies. Since it also includes a deep explanation of the modeling of the 2-DOF robotic arm system including its actuating DC-motors and their control using a PD controller, this textbook can also serve as an effective educational tool for both undergraduate and graduate electrical engineering students. Nº de ref. del artículo: 9783659289682
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 100. Nº de ref. del artículo: 26128057597
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The learning capabilities of artificial neural networks (ANNs) to identify and emulate the behavior of complicated nonlinear systems have made them effective tools that can be utilized in intelligent adaptive control strategies. The use of ANNs in the design of trajectory tracking controllers for robotic manipulators is dated back to the 1980s. Due to the flexibility of their structure as well as the continuous development and enhancement of their self-training algorithms, the use of ANNs in the field of robotic manipulator trajectory tracking control is being considered an important research area. This textbook explains in great detail the process of designing an effective controller to enhance the trajectory tracking performance of a two degree of freedom (2-DOF) robotic arm using neural networks. Feed-forward ANNs were used in both model-based and non-model-based control strategies. Since it also includes a deep explanation of the modeling of the 2-DOF robotic arm system including its actuating DC-motors and their control using a PD controller, this textbook can also serve as an effective educational tool for both undergraduate and graduate electrical engineering students.Books on Demand GmbH, Überseering 33, 22297 Hamburg 100 pp. Englisch. Nº de ref. del artículo: 9783659289682
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 100 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Nº de ref. del artículo: 131448610
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 100. Nº de ref. del artículo: 18128057591
Cantidad disponible: 4 disponibles