In modern cryptography, an encryption system is usually studied in the so-called black-box model. In this model, the cryptosystem is seen as an oracle replying to message encryption (and/or decryption) queries according to a secret value: the key. The security of the cryptosystem is then defined following a simple game. An adversary questions the oracle about the encryption (and/or decryption) of messages of its choice and, depending on the answers, attempts to recover the value of the secret key (or to encrypt/decrypt a message for which he did not query the oracle). If by following an optimal strategy the adversary only has a negligible chance of winning, the system is considered as secure. Several cryptosystems have been proved secure in the black-box model. However, this model is not always sufficient to ensure the security of a cryptosystem in practice. Let us consider the example of smart cards which are used as platforms for cryptosystems in various applications such as banking, access control, mobile telephony, pay TV, or electronic passport. By the very nature of these applications, a cryptosystem embedded on a smart card is physically accessible [...]
"Sinopsis" puede pertenecer a otra edición de este libro.
In modern cryptography, an encryption system is usually studied in the so-called black-box model. In this model, the cryptosystem is seen as an oracle replying to message encryption (and/or decryption) queries according to a secret value: the key. The security of the cryptosystem is then defined following a simple game. An adversary questions the oracle about the encryption (and/or decryption) of messages of its choice and, depending on the answers, attempts to recover the value of the secret key (or to encrypt/decrypt a message for which he did not query the oracle). If by following an optimal strategy the adversary only has a negligible chance of winning, the system is considered as secure. Several cryptosystems have been proved secure in the black-box model. However, this model is not always sufficient to ensure the security of a cryptosystem in practice. Let us consider the example of smart cards which are used as platforms for cryptosystems in various applications such as banking, access control, mobile telephony, pay TV, or electronic passport. By the very nature of these applications, a cryptosystem embedded on a smart card is physically accessible [...]
Matthieu Rivain received his PhD from University of Luxembourg in 2009. During his PhD study he was working as an engineer in cryptography within Oberthur Card Systems, and in 2010 Matthieu joined CryptoExperts. His fields of interest are cryptographic implementations, side-channel/fault attacks, and public-key cryptography.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In modern cryptography, an encryption system is usually studied in the so-called black-box model. In this model, the cryptosystem is seen as an oracle replying to message encryption (and/or decryption) queries according to a secret value: the key. The security of the cryptosystem is then defined following a simple game. An adversary questions the oracle about the encryption (and/or decryption) of messages of its choice and, depending on the answers, attempts to recover the value of the secret key (or to encrypt/decrypt a message for which he did not query the oracle). If by following an optimal strategy the adversary only has a negligible chance of winning, the system is considered as secure. Several cryptosystems have been proved secure in the black-box model. However, this model is not always sufficient to ensure the security of a cryptosystem in practice. Let us consider the example of smart cards which are used as platforms for cryptosystems in various applications such as banking, access control, mobile telephony, pay TV, or electronic passport. By the very nature of these applications, a cryptosystem embedded on a smart card is physically accessible [.] 232 pp. Englisch. Nº de ref. del artículo: 9783659263842
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Rivain MatthieuMatthieu Rivain received his PhD from University of Luxembourg in 2009. During his PhD study he was working as an engineer in cryptography within Oberthur Card Systems, and in 2010 Matthieu joined CryptoExperts. His fi. Nº de ref. del artículo: 5144113
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 232. Nº de ref. del artículo: 26127878207
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 232 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Nº de ref. del artículo: 132709344
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 232. Nº de ref. del artículo: 18127878197
Cantidad disponible: 4 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. On the Physical Security of Cryptographic Implementations | Matthieu Rivain | Taschenbuch | 232 S. | Englisch | 2014 | LAP LAMBERT Academic Publishing | EAN 9783659263842 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Nº de ref. del artículo: 105354035
Cantidad disponible: 5 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In modern cryptography, an encryption system is usually studied in the so-called black-box model. In this model, the cryptosystem is seen as an oracle replying to message encryption (and/or decryption) queries according to a secret value: the key. The security of the cryptosystem is then defined following a simple game. An adversary questions the oracle about the encryption (and/or decryption) of messages of its choice and, depending on the answers, attempts to recover the value of the secret key (or to encrypt/decrypt a message for which he did not query the oracle). If by following an optimal strategy the adversary only has a negligible chance of winning, the system is considered as secure. Several cryptosystems have been proved secure in the black-box model. However, this model is not always sufficient to ensure the security of a cryptosystem in practice. Let us consider the example of smart cards which are used as platforms for cryptosystems in various applications such as banking, access control, mobile telephony, pay TV, or electronic passport. By the very nature of these applications, a cryptosystem embedded on a smart card is physically accessible [.]Books on Demand GmbH, Überseering 33, 22297 Hamburg 232 pp. Englisch. Nº de ref. del artículo: 9783659263842
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In modern cryptography, an encryption system is usually studied in the so-called black-box model. In this model, the cryptosystem is seen as an oracle replying to message encryption (and/or decryption) queries according to a secret value: the key. The security of the cryptosystem is then defined following a simple game. An adversary questions the oracle about the encryption (and/or decryption) of messages of its choice and, depending on the answers, attempts to recover the value of the secret key (or to encrypt/decrypt a message for which he did not query the oracle). If by following an optimal strategy the adversary only has a negligible chance of winning, the system is considered as secure. Several cryptosystems have been proved secure in the black-box model. However, this model is not always sufficient to ensure the security of a cryptosystem in practice. Let us consider the example of smart cards which are used as platforms for cryptosystems in various applications such as banking, access control, mobile telephony, pay TV, or electronic passport. By the very nature of these applications, a cryptosystem embedded on a smart card is physically accessible [.]. Nº de ref. del artículo: 9783659263842
Cantidad disponible: 1 disponibles